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Abstract

Full reference image quality algorithms are standard tools in digital image processing, but have

not been utilised for printed images due to a “correspondence gap” between the digital domain (a

reference) and physical domain (printed sample). In this work, we propose a framework for applying

full reference image quality algorithms to printed images. The framework consists of accurate

scanning of printed samples, and automatic registration and descreening procedures which bring the

scans in correspondence with their digital originals. We complete the framework by incorporating

state-of-the-art full reference algorithms to it. Using data from comprehensive psychophysical

experiments of subjective quality experience, we benchmark the state-of-the-art methods and point

out similar results in the digital domain: the best digital full reference measures, such as the recently

introduced visual information fidelity (VIF) algorithm, perform best also for printed media.

Keywords: Print quality, image quality, quality assessment, image quality measure, full reference.
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1. INTRODUCTION

Full reference (FR) image quality assessment refers to methods which evaluate visual

quality based on an original image (reference) representing the “ideal quality”. This is the

main approach for evaluating and comparing the quality of digital images, but despite the

recent digitalisation of printing technologies, it is rarely used for printed media. The reason

is obvious: in the pipeline from a digital original to a print and again to a (scanned) digital

image, the original undergoes various transformations which alter the image in a way that

the FR assessment methods cannot be used.

In this work, we solve the problem with a framework which allows to transform the best

digital full reference image quality assessments for the use with prints. We show how the

effects of printing and scanning can be avoided by special image registration and descreen-

ing procedures which bring the scanned image into correspondence with the original. We

incorporate state-of-the-art full reference methods to our framework and benchmark them

with an extensive set of printed images and psychophysically defined ground truth. The

test samples (prints) used in the study were selected by media technology experts and re-

flect real quality inspection problems, giving us a challenging and meaningful test set. The

ground truth was collected through psychophysical experiments designed by psychologists.

The subjective tests were carried out by placing the hardcopy samples on a table and giving

the subjects appropriate evaluation tasks. This gave us a more intuitive and versatile “user

interface” than the common computer display approach where the evaluators can see only

one or a few samples at a time. As a consequence, the results are generally noteworthy

for the FR image quality research. To substantiate our findings, we report an extensive

statistical analysis of the the FR methods and rank them to find out the best ones. Our

main contributions are the framework, where FR assessments can be applied to printed im-

ages, and the comprehensive evaluation with true images and psychophysical ground truth

revealing the best performing FR methods for printed media.

The article is organised as follows. In Sect. 2, we describe the framework for computing FR

image quality assessment algorithms for printed images. The theory of full reference quality

assessment algorithms is presented in Sect. 3, as well as a set of state-of-the-art quality

assessment algorithms selected for this study. In Sect. 4, we briefly explain the selection of

our test samples and the psychophysical subjective evaluations forming the ground truth.
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The results are given in Sect. 5, discussed in Sect. 6 and concluded in Sect. 7.

1.1. Related Work

This study originates from the paper and printing industry and science, and therefore,

our presentation reflects the results and terminology from those fields. However, the per-

ceived quality considered is a general phenomenon appearing in any media (electronic paper,

displays, etc.). Measuring it is a challenging task since the ultimate quality evaluation can

be given only by an end-user who evaluates it qualitatively, subjectively, and dependent on

the context (product type, cultural factors, etc.). Understandably, industrial evaluations are

conducted by human observers, but recent developments in computer vision and image pro-

cessing have opened up intriguing possibilities to automate the assessments. Computational

modelling of visual quality with the help of machine vision is, however, a complicated task

which has not been solved. In this study, we aim to solve the problem by bringing digital

image evaluation methods to the world of printed products. The work in this study can be

seen as the “fusion of printed and digital visual quality assessments”. In the following, we

review the most important and influential works from both the fields.

Previous efforts to automate print quality evaluation using machine vision have focused

on automating the current manually performed assessments, or measuring distinct quantities

connected to the printing technology. For example, the KDY ImageXpert method examines

selected parts of a printed test pattern and returns various indicative values, such as the

roundness of a dot or edge raggedness of a line [1, 2]. The ISO 19751 standard [3], currently

under development, proposes the following attributes to be measured: micro-uniformity,

macro-uniformity, colour rendition, text and line quality, gloss, sharpness, and spatial adja-

cency. The human visual system (HVS) is partially modelled in more sophisticated methods

such as the automatic evaluation of subjective unevenness in solid printed areas (e.g., [4–

12]). All of these methods, however, measure only one factor of quality, possibly restricted

by known physiological facts (e.g., orientation or frequency sensitivity).

Digital image quality research, on the other hand, has produced several quality assessment

algorithms to measure the overall quality of images so that the result is consistent with

the subjective human opinion. A good introduction and comparison has been published

by Sheikh et al. [13]. In general, the image quality assessment (QA) algorithms can be
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divided into full-reference (FR) and no-reference methods (NR) according to whether an

input image is compared to a known reference image (FR), or the reference does not exist

(NR). The FR image quality assessment algorithms are commonly used in investigations of

image compression, data transmission, display optimisation, etc. However, these results are

very application specific, their subjective test material is limited, and most importantly, the

results are not transferable to print quality evaluation. In [14], a method to study the quality

of a printed image by comparing it to its referential version has been presented. However,

the method only detects discrepancies between the aligned pixels or regions of two printed

and scanned images, and does not concern the overall quality of print. In [15], a colour

reproduction quality metric for printed natural images based on the S-CIELAB model was

presented. The method computes only colour differences between two printed samples, and

the registration is done using registration marks, so it cannot be considered as a general-

purpose method. The no-reference image quality assessment is a much more difficult task,

and most of the proposed NR image quality assessment algorithms are designed for a single

distortion type. The NR image quality assessment is not within the scope of this paper.

Comparisons of FR QA algorithms have been presented in literature. In [16], a set of

simple mathematical image quality metrics, such as the average difference, and two graphical

metrics known as histograms and Hosaka plots have been compared against a subjective

evaluation. The test set consisted of compressed images with four different compression

techniques. In [17], two well-known FR QA algorithms, the Visual Difference Predictor [18]

and the Sarnoff Visual Discrimination Model [19], have been compared by using a test set

composed of computer generated patterns, synthesised images and natural pictures – the

distortions used were blurring, patterned noise and quantisation. In [20], three different

QA algorithms have been evaluated using JPEG compressed images with different bit rates.

In [21], a number of QA algorithms including mathematical distance metrics and human

visual system based methods have been compared. The test set of the study consisted of

compressed images, blurred images and Gaussian noise. The most notable evaluation of FR

QA algorithms with a solid statistical significance analysis has been presented by Sheikh et

al. [13]. They have compared the state-of-the-art image quality assessment algorithms using

an extensive set of samples and subjective tests. Our statistical analysis was influenced by

their work.

The main reasons for conducting this study and reporting its novel results are i) none
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of the above-mentioned studies have considered the quality of printed images, and ii) the

distortion types in the earlier works have been artificial distortions, such as Gaussian noise

and blur, or in more realistic settings, image compression and transmission artefacts, but

these do not allow extensive generalisation and are certainly not characteristic of printed

media. Our approach differs from most of the earlier comparisons of image QA algorithms

since we are not interested in the overall visual quality of an image within some abstract

quality scale. Instead, we try to evaluate the overall visual quality of print dependent on the

paper grade but independent from the image content. There does not exist a single measure

to properly estimate the overall quality of paper for printed photograph applications, and

thus, the scope of this paper is to test how the FR QA algorithms suit for this problem.

2. FULL REFERENCE IMAGE QUALITY FRAMEWORK FOR PRINTED IM-

AGES

When the quality of a compressed image is analysed by comparing it to the original (ref-

erence) image, the FR metrics can be computed in a straightforward manner, cf., computing

“distance metrics”. This is possible because digital representations are in correspondence,

i.e., there exist no rigid, partly rigid or non-rigid (elastic) spatial shifts between the images,

and the compression should retain at least photometric equivalence. This is not the case

with printed media, however. In modern digital printing, a digital reference exists, but the

image data undergoes various irreversible transformations, especially in printing and scan-

ning, until another digital image for the comparison is established. In the following, we

describe our system where well-known methods are combined to form a novel automatic

framework for analysing full reference image quality of printed products.

The first important consideration is related to the scanning process. Since we are inter-

ested in print quality instead of scanning quality, the scanner must be an order of magnitude

better than the printing system. Fortunately, this is not difficult to achieve with the top-

quality scanners available, in which the sub-pixel accuracy of the original can be achieved.

It is important to use sub-pixel accuracy since it prevents the scanning distortions from

affecting the registration. Furthermore, to prevent photometric errors, the scanner colour

mapping should be adjusted to correspond to the original colour information. This can be

achieved by using the scanner profiling software accompanying the high-quality scanners.
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Secondly, a printed image contains halftone patterns, and therefore, descreening is needed

to remove the high halftone frequencies and form a continuous tone image comparable to

the reference image. Thirdly, the scanned image needs to be accurately registered with

the original image before the FR QA algorithm or dissimilarity between the images can be

computed. The registration can be assumed to be rigid since non-rigidity is a reproduction

error and partly-rigid correspondence is avoided using the high scanning resolution.

Based on the discussion above, it is possible to sketch the main structure of our frame-

work. The framework was originally presented by the authors in [22], but we will briefly

describe it in the following. The framework structure and the data flow are illustrated in

Fig. 1. First, the printed halftone image is scanned using a colour-profiled scanner. Second,

the descreening is performed using a Gaussian low-pass filter (GLPF) which produces a con-

tinuous tone image. To perform the descreening in a more physiologically plausible way, the

image is converted to the CIE L*a*b* colour space in which the colour channels are filtered

separately. The CIE L*a*b* spans a perceptually uniform colour space and does not suffer

from the problems related to, e.g., RGB, where the colour differences do not correspond to

the human visual system [23]. Moreover, the filter cut-off wavelength is limited by the print-

ing resolution and should not be higher than 0.5 mm, which is the smallest detail visually

disturbing to the human eye when the unevenness of a print is evaluated from the viewing

distance of 30 cm [24] (in ideal conditions the acuity limit of the human eye can be as small

as 0.017◦ which corresponds to 0.1 mm [25]). To make the input and reference images com-

parable, the reference image needs to be filtered with an identical cut-off wavelength. The

colour profiling of the scanner provides a “photometric registration” and the descreening a

“physiological registration” – in the end, a spatial registration is needed.

2.1. Rigid Image Registration

Rigid image registration was considered as a difficult problem until the invention of gen-

eral interest point detectors, and rotation and scale invariant descriptors. These methods

provide an unparametrised approach to finding accurate and robust correspondence essen-

tial for the registration. The most popular method which combines both the interest point

detection and description is David Lowe’s scale-invariant feature transform (SIFT) [26]. Reg-

istration based on the SIFT features has been utilised, for example, in mosaicing panoramic
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FIG. 1: The structure of the framework and data flow for computing full-reference QA algorithms

for printed images.

views [27]. The registration consists of the following stages: i) extracting local features from

both images, ii) matching the features (correspondence), iii) finding a 2-D homography for

the correspondences, and finally, iv) transforming one image into another.

Our method performs a scale and rotation invariant extraction of local features using

SIFT. The SIFT method also provides the descriptors which can be used for matching. As a

standard procedure, the random sample consensus (RANSAC) principle presented in [28] is

applied to find the best homography using exact homography estimation for the minimum

number of points and linear estimation methods for all “inliers”. The linear methods are

robust and accurate also for the final estimation since the number of correspondences is

typically quite large (several hundreds of points). In our framework the implemented linear

homography estimation methods are Umeyama for isometry and similarity [29], and the

restricted direct linear transform (DLT) for affine homography [30]. The only adjustable pa-

rameters in our method are the number of random iterations and the inlier distance threshold
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for the RANSAC which can be safely set to 2000 and 0.7 mm, respectively. This makes the

whole registration algorithm practically parameter free. For the image transformation, we

utilise standard remapping using bicubic interpolation. In [22], the presented registration

algorithm was shown to be accurate for printed samples when an affine transformation was

used.

2.2. Image Quality Computation

In the case of printed image quality assessment, FR QA algorithms have some special

requirements. Although the above-mentioned registration works well, subpixel errors do

occur. Because of this, simple pixelwise distance formulations, such as the root mean square

error (RMSE), do not work well. In other words, a good FR QA algorithm should not

be sensitive to such small registration errors. A more notable problem emerges from the

subjective tests which are carried out using printed (hardcopy) samples while the reference

(original) image is in digital form. As a consequence, the reference image cannot be taken

into the subjective evaluation and the evaluators do not usually see the actual reference.

Therefore, FR QA algorithms that just compute simple similarity between the reference

image and the input image, do not succeed. In the next section, we will discuss different

approaches to FR QA algorithms and their differences. The QA algorithms selected for our

statistical evaluation are discussed in more detail.

3. FULL REFERENCE IMAGE QUALITY ASSESSMENT ALGORITHMS

Several approaches to develop FR QA algorithm have been proposed. Generally, FR QA

algorithms can be divided into three groups: arbitrary signal fidelity criteria, HVS error-

based methods, methods that use natural scene statistics. The first group mainly contains

mathematical distance formulations that are applied to image quality assessment hoping that

they correlate well with perceptual quality. The second group consists of computationally

heavy methods that model the HVS. Methods in the third group examine the problem from

an information theoretic point of view.
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3.1. Arbitrary Signal Fidelity Criteria

Several mathematical distance formulations that compute similarity or dissimilarity be-

tween two matrices (images) have been evaluated in [16] and [21]. The most widely used

metrics are the mean squared error (MSE) and peak signal-to-noise ratio (PSNR). These

methods have several advantages: they are computationally efficient and have a clear physi-

cal meaning. MSE can be generalised to colour images by computing the Euclidean distance

in the perceptually uniform CIE L*a*b* colour space as

LabMSE =
1

N2

N−1
∑

i,j=0

[∆L∗(i, j)2 + ∆a∗(i, j)2 + ∆b∗(i, j)2], (1)

where ∆L∗(i, j), ∆a∗(i, j) and ∆b∗(i, j) are differences for the colour components at point

(i, j). This metric is known as the L*a*b* perceptual error [21].

In [31], a method to apply fuzzy similarity measures to image quality assessment was

presented. In the method, grey-level images were treated as fuzzy sets. Prior to computing

the similarity, the images were further divided into regions with different weights to better

adapt to the human perception. The method was extended in [32] by combining histogram

similarity measures to the earlier pixelwise similarity measures, and in [33], it was generalised

to colour images.

The universal quality index (UQI) was introduced in [34], and a further improvement was

presented in [35] in the form of the structural similarity metric (SSIM). The basic idea of

these metrics is to measure the loss of image structure, i.e., pixels near to each other have

strong dependencies which carry information about the structure of the objects in the visual

scene [35]. The HVS is assumed to be highly adapted to structural information [36], and

structural distortions should be treated in a different manner than distortions arising form

variations in lightning, such as brightness and contrast changes. SSIM is defined as

SSIM = l(x, y)α
· c(x, y)β

· s(x, y)γ (2)

where

l(x, y) =
2x̄ȳ + C1

x̄2 + ȳ2 + C1

(3)

c(x, y) =
2σxσy + C2

σ2
x + σ2

y + C2
(4)

s(x, y) =
2σx,y + C3

σxσy + C3
(5)
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l(x, y) is the luminance distortion (comparison based on mean intensities), c(x, y) is the

contrast distortion (comparison based on standard deviations of the intensities), and s(x, y)

is the structural distortion (correlation after luminance and contrast normalisation). UQI

is a special case of SSIM with α = β = γ = 1 and C1 = C2 = C3 = 0. This is why

UQI gives unstable results when the mean intensities or intensity variances of reference and

input images are very close to each other. However, for printed images this is hardly ever

the case. For image quality assessment, UQI and SSIM are applied locally. In UQI, this is

implemented by using an 8× 8 window which moves pixel-by-pixel over the image, while in

SSIM, windowing is performed by using an 11 × 11 circular-symmetric Gaussian weighting

function.

3.2. HVS Error-based Methods

A distorted image can be divided into an undistorted reference signal and an error signal.

A typical HVS image QA algorithm is based on the assumption that the loss of perceptual

quality is directly related to the visibility of the error signal [35]. These QA algorithms

operate by weighting different aspects of the error signal based on their visibility. The

approach was first introduced by Mannos and Sakrison [37]. Other popular HVS error

based methods are the Visual Difference Predictor (VDP) by Daly [18] and the Sarnoff

Visual Discrimination Model [19].

A typical scheme for computing HVS error-based QA algorithms consists of the following

steps: preprocessing, contrast sensitivity function (CSF) filtering, channel decomposition,

error-normalisation and error pooling [35]. The preprocessing step includes, for example,

colour space transforms and low-pass filtering to simulate the point-spread function of the

eye optics. In the CSF filtering step, the image is weighted according to the sensitivity

of the HVS to different spatial and temporal frequencies. In the channel decomposition

step, the image is separated into subbands (channels) using, for example, the discrete cosine

transform or a wavelet transform. In the next step, the error (the difference between the

reference and input image) is computed for each channel and weighted to convert the errors

into units of just noticeable difference (JND). Finally, the errors in different channels are

combined into a single scalar using, for example, the Minkowski distance [35].

The HVS model of VDP [18] is a typical example containing three main steps: amplitude
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non-linearity, CSF weighting and a series of detection mechanisms. First, each image is

passed through a non-linear response function to simulate the adaptation and response of

retinal neurons. Second, the images are weighted with the CSF in the frequency domain

and converted to local contrast information. Next, the images are split into 31 channels (5

spatial frequency bands combined with 6 orientation bands and 1 orientation-independent

band) and transformed back to the spatial domain. A masking function is applied to each

channel separately, and finally, error pooling is performed to sum the probabilities of visible

differences in all channels to a single map of detection probabilities, which characterises the

regions in the input image that are visually different from the original image.

In noise quality measure (NQM) [38], a model-restored image is computed instead of the

residual image. This means that both the original and degraded input image are passed

through a restoring algorithm using the same parameters. The NQM is defined as

NQM = 10 log10

(

∑

i

∑

j O2
s(i, j)

∑

i

∑

j(Os(i, j) − Is(i, j))

)

, (6)

where Os(i, j) is the simulated version of the model restored image and Is(i, j) is the restored

image. The HVS model in NQM is based on Peli’s contrast pyramids [39].

Perceptual Image Difference (PDiff) [40] was originally developed for the needs of im-

age rendering. The method improved earlier HVS error-based QA algorithms by including

spatial and temporal information.

Several limitations of the HVS error-based QA algorithms are listed in [35]. In brief, it

is not clear that the fundamental assumptions of the HVS error-based QA algorithms, i.e.,

the error visibility is equal to the loss of quality, and that the vision models derived from

psychophysical experiments using simple test patterns are generalisable to image quality

assessment of complex natural images, are correct.

3.3. Image Quality Assessment Algorithms Using Natural Scene Statistics

A third way to approach the quality assessment problem is the statistical viewpoint.

Natural scene statistics (NSS) refers to the statistical properties of natural images as a

distinction to the statistics of artificial images such as text, paintings or computer generated

graphics. A review on the statistical modelling of natural images and their applications can

be found in [41]. It is plausible that the biological evolution of the HVS has been controlled
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by adaptation to natural environments, and thus, modelling the NSS and the HVS are

essentially dual problems [42].

The information fidelity criterion (IFC) based on the NSS has been presented in [42]. In

the criterion, quality is evaluated by using the NSS and distortion models to find statistical

information shared by the original and input images. The NSS model used is a Gaussian

scale mixture [43] in the wavelet domain. Since the NSS and HVS modelling are assumed

to be dual problems, some parts of the HVS are already involved in the NSS model of

IFC. However, e.g., contrast sensitivity and the point spread function are missing. In visual

information fidelity (VIF) [44], which is an extension of the IFC, the HVS model is added

to include these aspects.

3.4. FR Image QA algorithms Selected for This Study

The selected FR QA algorithms and their basic information, such as whether a QA algo-

rithm works with colour or only intensity, are listed in Table I. Most of the QA algorithms

are measured using implementations available on the Internet, and all the algorithms were

computed using the default parameter values proposed by the authors. If the algorithm

works only with luminance, the L* component in CIE L*a*b* colour space was used. A

public implementation of UQI is available at [45] and SSIM at [46]. Despite the fact that

SSIM is an improved version of UQI, also UQI was tested because of the different windowing

approach. The Daly VDP implementation can be found at [47], in which the original VDP

is generalised to high dynamic range (HDR) images. Modifications to the original VDP are

presented in [48]. A C++ implementation for PDiff is available at [49], a Matlab imple-

mentation for the NQM at [50] and for the IFC and VIF at [51]. Combined neighbourhood

based and histogram similarity measures were computed as presented in [33] with a minor

modification: CIE L*a*b* colours were used instead of RGB colours. Hence, differences

correspond better to the human perception, and additional colour space transformations are

avoided (descreening is done in the CIE L*a*b* colour space). In [31] and [32], a very large

number of different fuzzy similarity measures were presented. All these similarity measures

were tested, but only the highest performing ones are presented in this paper.
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TABLE I: FR QA algorithms used in this study.

QA algorithm Acronym Type Colour

Peak signal to noise ratio PSNR mathematical no

L*a*b* perceptual error [21] LabMSE mathematical yes

Universal quality index [34] UQI structural no

Structural similarity metric [35] SSIM structural no

Information fidelity criterion [42] IFC information theoretic no

Visual information fidelity [44] VIF information theoretic no

Noise quality measure [38] NQM HVS error-based no

Perceptual image difference [40] PDiff HVS error-based yes

(High dynamic range) visible difference (HDR-)VDP HVS error-based no

predictor [48]

Fuzzy similarity measures [31] Fuzzy S9 mathematical no

Combined neighbourhood-based and Fuzzy Q1,5c, Q18,9c mathematical yes

histogram similarity measures [33] and Q18,5c

4. DATA AND METHODS

In this section, we introduce our data, i.e., the selected paper types, printed natural

images, psychophysical subjective evaluations (the ground truth), and preprocessing of the

raw data.

4.1. Test Sets

Our objective was to evaluate the effect of paper grade to the overall visual quality of

printed images. Therefore, our test sets consisted of several paper grades at the cost of

image contents. The first set of test samples consisted of natural images printed with a

high quality inkjet printer on 16 different paper grades. The paper grades and the printing

process were selected according to the current practises, as described in detail in [52–54].

The natural images used in the study are presented in Fig. 2. The image contents were
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selected based on current practises and previous experience in media technology, and they

included typical content types such as objects with details (cactus), a human portrait (man)

and a landscape (landscape). The fourth image content combined all the types (studio).

The second set of samples consisted of images printed with a production-scale electropho-

tographic printer on 21 different paper grades. The same image contents were used excluding

studio (Fig. 2(d)). The subjective evaluations, described later, were performed separately for

both sets and image contents resulting in 7 separate tests of 16 or 21 samples, respectively.

(a) (b) (c) (d)

FIG. 2: Natural images used in the study: (a) cactus; (b) man; (c) landscape; (d) studio.

The printed samples were scanned using a high quality scanner with 1250 dpi resolution

and 48-bit RGB colours. A colour management profile was devised for the scanner before

scanning, and colour correction, descreening and other automatic settings of the scanner

software were disabled. The digitised images were saved using lossless compression.

The descreening was performed using 4 different cut-off wavelengths: 0.1 mm, 0.2 mm,

0.3 mm and 0.5 mm. The cut-off wavelength approximately corresponds to the the smallest

detail remaining after the descreening. The smallest cut-off wavelength was selected to

correspond to the printing resolution (360dpi), i.e., the filter removes the halftone pattern.

The effect of the cut-off wavelength was also studied. The registration was made using the

affine transformation.

4.2. Subjective Evaluation

The performance of the selected FR QA algorithms was studied against the psychophys-

ical subjective evaluations (the ground truth). The subjective evaluation procedure is de-

scribed in detail in [54]. In brief, samples of a specific set (the same image content and
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printing method) were placed on a table in random order. Labels with the numbers from 1

to 5 were also presented on the table. The observer was asked to select the sample image

representing the lowest quality in the set and place it on the number 1. Then, the observer

was asked to select the highest quality sample and place it on the number 5. After that,

the observer’s task was to place the remaining samples on the numbers so that the quality

increased steadily from 1 to 5. The final ground truth was formed by computing the mean

opinion scores (MOSs) over all observers (N=28).

4.3. Processing of Raw Data

From the practical point of view, it is more interesting to put paper grades in a proper

order than to find the overall quality of a single printed image on some abstract quality

scale. Therefore, the subjective evaluation as well as QA algorithm scores should be similar

over different image contents for the same paper grade. The subjective evaluation results

were always scaled to the interval 1–5, but the image quality QA algorithm scores may differ

significantly between the image contents. Therefore, either the QA algorithm scores need

to be scaled to a common scale or the analysis needs to be done separately for different

image contents. We selected the first option since the number of samples (16 or 21) was not

enough to find statistically significant differences between the QA algorithms. Therefore,

different image contents were combined to form a larger test set by scaling the QA algorithm

scores. Here, the scaling was performed linearly. Let xn = (xn,1, ..., xn,M) represent the QA

algorithm scores of one FR assessment for all samples (1-M) within a single image content

n. Then, in the linear model we have

x̂n,i = b̂n





1

xn,i



 , (7)

where b̂n = (bn,1, bn,2) are selected by minimising the errors between the image contents:

b̂n = arg min
bn

∑

i

[x1,i − (bn,1 + bn,2xn,i)]
2. (8)

For the first image content, b̂1 = (0, 1), and for the remaining image contents, b̂n are such

that the QA algorithm scores are converted to values similar to the values of the first image

content with the same paper grade. The above-mentioned method does not allow combining
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results from the different printing methods (different paper grades), and therefore, we finally

had two test sets: Test set A containing 64 inkjet samples and Test set B containing 63

electrophotography samples.

5. RESULTS

5.1. Performance Measures

Three performance measures were chosen for the comparison of the QA algorithms. The

selected measures are similar to those presented in [13]. The first one is the linear correla-

tion coefficient between MOS and the QA algorithm score after nonlinear regression. The

following nonlinearity (constrained to be monotonic) was used [13]:

Q(x) = β1

(

1

2
−

1

1 + exp(β2x − β3)

)

+ β4x + β5, (9)

where x is the modified algorithm score. The second performance measure is the Spearman

rank order correlation coefficient (SROCC), and the third measure is the root mean squared

error (RMSE) between MOS and QA algorithm score after the nonlinear regression. The

results are presented in Tables II, III and IV. In Fig. 3 and 4 some QA algorithms are

presented with regression curves. In the plots, the best cut-off wavelengths were used for

each QA algorithm.

5.2. Statistical Significance

The statistical significance of the previous results was studied using the variance test. It

expresses the trust in the superiority or inferiority of one QA algorithm over another based on

the performance measures. The test is based on the assumption that the residuals (difference

between MOS and the QA algorithm score) are normally distributed. The normality of the

residuals was tested using Lilliefors test [55] with the 5% significance level and the results

are shown in Table VII. The F-test was used to test whether the variances of the residuals

of two QA algorithms are identical, i.e., the QA algorithm residuals are randomly drawn

from the same distribution. The null hypothesis is that the residuals of both QA algorithms

come from the same distribution and are statistically indistinguishable with 95% confidence.
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FIG. 3: Data and nonlinear regression curves (Test set A). The symbols represent the image

contents: red x-mark - man, blue circle - lake, green diamond - cactus, magenta square - studio.

(a) (HDR-)VDP; (b) IFC; (c) NQM; (d) SSIM; (e) UQI; (f) VIF.
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FIG. 4: Data and nonlinear regression curves (Test set B). The symbols represent the image

contents: red x-mark - man, blue circle - lake, green diamond - cactus. (a) IFC; (b) SSIM; (c)

UQI; (d) VIF.
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TABLE II: Correlation between the QA algorithm scores and MOS after nonlinear regression for

both test sets and all cut-off wavelengths

Test set A Test set B

QA algorithm 0.1mm 0.2mm 0.3mm 0.5mm 0.1mm 0.2mm 0.3mm 0.5mm

PSNR 0.440 0.424 0.404 0.349 0.536 0.547 0.522 0.524

LabMSE 0.289 0.385 0.364 0.215 0.605 0.601 0.598 0.601

UQI 0.982 0.983 0.984 0.984 0.849 0.871 0.882 0.887

SSIM 0.978 0.979 0.978 0.970 0.776 0.819 0.802 0.721

IFC 0.983 0.982 0.982 0.982 0.842 0.851 0.860 0.873

VIF 0.982 0.982 0.982 0.982 0.818 0.807 0.811 0.793

NQM 0.988 0.988 0.988 0.988 0.702 0.700 0.695 0.697

PDiff 0.928 0.948 0.957 0.955 0.302 0.178 0.081 0.207

(HDR-)VDP 0.982 0.980 0.978 0.975 0.675 0.608 0.556 0.381

Fuzzy S9 0.686 0.687 0.686 0.639 0.628 0.581 0.580 0.595

Fuzzy Q1,5c 0.951 0.962 0.970 0.966 0.396 0.358 0.586 0.570

Fuzzy Q18,9c 0.881 0.776 0.657 0.581 0.670 0.672 0.679 0.691

Fuzzy Q18,5c 0.887 0.828 0.742 0.699 0.634 0.740 0.716 0.726

The significance test results are shown in Tables V and VI for both test sets and between

all QA algorithms.

5.3. Sensitivity to Image Content

Subjective image quality depends more on how the distortion is perceived than how much

there is distortion. For example, if the distortion is not visible in all contents, their perceived

quality may significantly differ. Our research originates from the viewpoint of paper, not

the printing process, and therefore, we seek out QA algorithms which are independent of the

image content. The sensitivity of the tested QA algorithms to image content is illustrated in

Fig. 5. The lines represent the variance of the QA algorithm scores, and the dots the mean

value for each content (order: man, landscape, cactus and studio). To fit all QA algorithms

19



TABLE III: SROCC between QA algorithm scores and MOS for both test sets and all cut-off

wavelengths.

Test set A Test set B

QA algorithm 0.1mm 0.2mm 0.3mm 0.5mm 0.1mm 0.2mm 0.3mm 0.5mm

PSNR 0.294 0.269 0.254 0.230 0.432 0.428 0.419 0.412

LabMSE 0.347 0.315 0.301 0.270 0.470 0.471 0.470 0.466

UQI 0.912 0.914 0.914 0.915 0.678 0.763 0.790 0.788

SSIM 0.899 0.915 0.921 0.906 0.509 0.689 0.697 0.660

IFC 0.901 0.900 0.903 0.891 0.719 0.731 0.744 0.761

VIF 0.901 0.893 0.884 0.887 0.738 0.729 0.730 0.726

NQM 0.885 0.885 0.885 0.886 0.633 0.633 0.631 0.625

PDiff 0.800 0.798 0.803 0.803 0.316 0.206 0.171 0.241

(HDR-)VDP 0.924 0.923 0.899 0.827 0.608 0.537 0.487 0.387

Fuzzy S 0.606 0.578 0.561 0.550 0.543 0.537 0.532 0.519

Fuzzy Q1,5c 0.821 0.884 0.902 0.872 0.441 0.101 0.317 0.395

Fuzzy Q18,9c 0.790 0.740 0.677 0.597 0.588 0.618 0.615 0.620

Fuzzy Q18,5c 0.805 0.780 0.737 0.706 0.563 0.623 0.634 0.632

into a single image, the QA algorithm scores were normalised to zero mean and unit variance

over all image contents.

6. DISCUSSION

As can be seen from Tables II, III and IV, the results clearly differ between the test sets

A (inkjet) and B (electrophotography). For almost every QA algorithm, the correlations are

higher and the errors smaller for Test set A. The reason for this is the fact that Test set

A is considerably easier than Test set B, both subjectively and computationally. Quality

variation between the samples is higher, and two or three compact clusters with distinctly

different quality exist in the data (see Fig. 3). In general, the methods succeed since most

QA algorithms put these clusters in the right order, increasing the correlations using Test set
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TABLE IV: RMSE between the QA algorithm scores and MOS after nonlinear regression for both

test sets and all cut-off wavelengths.

Test set A Test set B

QA algorithm 0.1mm 0.2mm 0.3mm 0.5mm 0.1mm 0.2mm 0.3mm 0.5mm

PSNR 8.542 8.614 8.700 8.923 5.282 5.237 5.335 5.329

LabMSE 9.111 8.882 8.922 9.386 4.981 4.997 5.012 5.000

UQI 1.791 1.753 1.711 1.683 3.307 3.072 2.948 2.884

SSIM 1.977 1.947 1.969 2.310 3.943 3.590 3.738 4.335

IFC 1.737 1.776 1.782 1.773 3.372 3.281 3.189 3.051

VIF 1.795 1.790 1.789 1.773 3.594 3.692 3.663 3.810

NQM 1.460 1.461 1.461 1.459 4.456 4.465 4.500 4.483

PDiff 3.533 3.017 2.752 2.813 5.962 6.155 6.235 6.120

(HDR-)VDP 1.783 1.881 1.990 2.121 4.613 4.966 5.202 5.784

Fuzzy S9 6.917 6.908 6.920 7.322 4.868 5.090 5.096 5.030

Fuzzy Q1,5c 2.938 2.592 2.319 2.468 5.743 5.843 5.076 5.138

Fuzzy Q18,9c 4.516 6.000 7.169 7.738 4.651 4.634 4.594 4.538

Fuzzy Q18,5c 4.399 5.328 6.380 6.805 4.842 4.210 4.367 4.304

A. Another practical reason for the different results between Test set A and Test set B arises

from the two different kinds of printing methods; their underlying artifacts and distortions

affect the subjective quality experience differently. Respectively, the QA algorithms differ by

being sensitive to different kinds of distortions, which explains why some QA algorithms are

better suited for inkjet (Test set A) and some for electrophotographic (Test set B) prints. It

is noteworthy that the best QA algorithms for both sets model the phenomenon reasonably

well and consistently, as is evident in Figs. 3 and 4 (the shapes are similar).

As expected, the simple pixelwise metrics, such as the PSNR and LabMSE, do not work

well. With Test set A, even the subjectively distinguishable clusters were not assorted

correctly. However, most of the advanced methods showed high correlation coefficients. UQI,

SSIM, IFC, VIF, NQM and HDR-VDP are the best ones and statistically indistinguishable

from each other. With Test set B, the group of well working QA algorithms is reduced to
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TABLE V: F-test results (Test set A). Each entry contains five binary numbers. The first four

numbers represent the different cut-off wavelengths used in the descreening (from smallest to high-

est), and the fifth number represents the best result for each QA algorithm (the cut-off wavelength

is treated as a parameter of the QA algorithm). 0 means that QA algorithms are statistically

indistinguishable from each other and 1 means that QA algorithms have a statistically significant

difference.

PSNR LabMSE UQI SSIM IFC VIF NQM PDiff VDP FS9 FQ1,5c FQ18,9c FQ18,5c

PSNR 0000 00000 11111 11111 11111 11111 11111 11111 11111 00000 11111 11001 11110

LabMSE 00000 00000 11111 11111 11111 11111 11111 11111 11111 10001 11111 11001 11111

UQI 11111 11111 00000 00010 00000 00000 00000 11111 00000 11111 11111 11111 11111

SSIM 11111 11111 00010 00000 00010 00010 11111 11101 00000 11111 11000 11111 11111

IFC 11111 11111 00000 00010 00000 00000 00000 11111 00000 11111 11111 11111 11111

VIF 11111 11111 00000 00010 00000 00000 00000 11111 00000 11111 11111 11111 11111

NQM 11111 11111 00000 11111 00000 00000 00000 11111 01110 11111 11111 11111 11111

PDiff 11111 11111 11111 11101 11111 11111 11111 00000 11111 11111 00000 01111 01111

(HDR-)VDP 11111 11111 00000 00000 00000 00000 01110 11111 00000 11111 11001 11111 11111

Fuzzy S9 00000 10001 11111 11111 11111 11111 11111 11111 11111 00000 11111 10001 11000

Fuzzy Q1,5c 11111 11111 11111 11000 11111 11111 11111 00000 11001 11111 00000 11111 11111

Fuzzy Q18,9c 11001 11001 11111 11111 11111 11111 11111 01111 11111 10001 11111 00000 00001

Fuzzy Q18,5c 11110 11111 11111 11111 11111 11111 11111 01111 11111 11000 11111 00001 00000

TABLE VI: F-test results (Test set B).

PSNR LabMSE UQI SSIM IFC VIF NQM PDiff VDP FS9 FQ1,5c FQ18,9c FQ18,5c

PSNR 00000 00000 11111 11101 11111 11111 00000 00000 00000 00000 00000 00000 00000

LabMSE 00000 00000 11111 01101 11111 11111 00000 00000 00000 00000 00000 00000 00000

UQI 11111 11111 00000 00010 00000 00010 11111 11111 11111 11111 11111 11111 11111

SSIM 11101 01101 00010 00000 00010 00000 00000 11111 01110 01101 11101 01001 00000

IFC 11111 11111 00000 00010 00000 00000 11111 11111 11111 11111 11111 11111 10111

VIF 11111 11111 00010 00000 00000 00000 00000 11111 01110 11111 11111 10001 10000

NQM 00000 00000 11111 00000 11111 00000 00000 11111 00010 00000 11000 00000 00000

PDiff 00000 00000 11111 11111 11111 11111 11111 00000 10001 00000 00000 01111 01111

(HDR-)VDP 00000 00000 11111 01110 11111 01110 00010 10001 00000 00000 00000 00000 00010

Fuzzy S9 00000 00000 11111 01101 11111 11111 00000 00000 00000 00000 00000 00000 00000

Fuzzy Q1,5c 00000 00000 11111 11101 11111 11111 11000 00000 00000 00000 00000 00000 01000

Fuzzy Q18,9c 00000 00000 11111 01001 11111 10001 00000 01111 00000 00000 00000 00000 00000

Fuzzy Q18,5c 00000 00000 11111 00000 10111 10000 00000 01111 00010 00000 01000 00000 00000
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TABLE VII: Gaussianity of residuals. 1 means that the data are normally distributed according

the Lilliefors’ composite goodness-of-fit test.

Test set A Test set B

QA algorithm 0.1 0.2 0.3 0.5 0.1 0.2 0.3 0.5

PSNR 0 0 0 0 1 1 1 1

LabMSE 0 0 0 0 1 1 1 1

UQI 1 1 1 0 1 1 1 1

SSIM 1 1 1 1 1 1 1 1

IFC 1 1 1 0 1 1 1 1

VIF 1 1 1 1 0 1 1 1

NQM 0 0 0 0 1 1 1 1

PDiff 0 1 1 1 0 0 0 0

(HDR-)VDP 1 1 0 1 1 1 1 1

Fuzzy S9 0 0 0 0 1 1 1 1

Fuzzy Q1,5c 1 1 1 1 0 1 1 1

Fuzzy Q18,9c 0 0 0 0 1 1 1 1

Fuzzy Q18,5c 0 0 0 0 1 1 1 1

UQI, SSIM, IFC and VIF, which are again statistically indistinguishable from each other.

The other performance measures, SROCC and RMSE, support these conclusions. If a single

optimal QA algorithm should be selected, VIF would be a safe choice since it was shown to

be the best in an earlier study on digital images [13].

As a secondary task, the selection of the cut-off wavelength of GLPF in the descreening

was studied. A notable result concerning it is that the optimal selection depends on the QA

algorithm (see Tables II, III and IV), and a single universal best cut-off wavelength cannot

be defined. For example, for UQI the best cut-off wavelength seems to be 0.5 mm, while

for VIF it is 0.1 mm. However, the effect is not too dramatical, and it seems that selection

of the cut-off wavelength is not a crucial step, as long it is large enough to filtered out the

halftone pattern and small enough not to be visually disturbing to the human eye.

The requirement for the QA algorithm to be independent of the image content leads to
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FIG. 5: Illustration of the sensitivity to image content. The lines represent the variance of the QA

algorithm scores and the dots the mean value for each content (order: man, landscape, cactus and

studio). (a) Test set A; (b) Test set B.

a new problem. The original objective to automatically estimate the printability of paper

using printed natural images is divided into two subproblems: i) how to compute the quality

of a natural image so that it is consistent with the subjective human evaluation, and ii) how

to measure the paper or print quality in a way that it does not depend on the content of

the examined image. Unfortunately, there is a conflict between the solutions for these two.

For example, the unevenness of a print (noise) is a serious problem in a landscape image

with a large solid colour region of sky, while it is almost imperceptible in an image with a

great deal of small details. A QA algorithm that models the human perception produces a

different result than an algorithm that computes the amount of distortion independent of the

image content. This problem is apparent in Table VIII, where the correlation coefficients

between the subjective evaluations with different image contents are shown. The images

printed on the same paper grade using the same printer should have the same amount of

signal-level distortion, and therefore, if the image content did not affect the quality, the

correlations would be near to unity. This holds quite well for Test set A, where the quality

variation is large, but for Test set B, the image contents had a notable influence on the

perceived quality despite the similar level of distortion. In summary, both conditions, a

good correspondence to human perception and independence of the image content, cannot

be achieved simultaneously in a sufficient manner, and therefore, choosing the correct QA

algorithm depends on the circumstances. From Fig. 5, it can be seen that the NQM is
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the best QA algorithm based on its insensitivity to image content. However, no significant

differences in the earlier selected group of the best QA algorithms, UQI, SSIM, IFC and

VIF, can be revealed in terms of sensitivity to content.

TABLE VIII: Correlation coefficients between the subjective evaluations with different image con-

tents.

Test set A Test set B

Cont. man lake cactus studio man lake cactus

man 1.000 0.990 0.995 0.992 1.000 0.800 0.920

lake 0.990 1.000 0.988 0.989 0.800 1.000 0.889

cactus 0.995 0.988 1.000 0.993 0.920 0.889 1.000

studio 0.992 0.989 0.993 1.000

7. CONCLUSIONS

In this work, we presented a novel and complete framework to compute full reference

(FR) quality assessment algorithms for printed natural images. FR QA algorithms are

popular and well studied in digital image quality research, but we report the first conclusive

results obtained with printed media. Using our framework, we evaluated and statistically

verified the performance of several state-of-the-art FR QA algorithms for an extensive set

of printed products. As the main conclusion, we found out that the UQI, SSIM, IFC and

VIF algorithms outperformed other QA algorithms, while the NQM was the least sensitive

to image content. In the experimental part of the work, we reported remarkable correlations

between the FR QA algorithms and subjective visual quality evaluations, promoting their

use in printing and media technology. Since the tested methods have been mainly developed

for digital image quality analysis, we have established a new research direction, i.e., how the

digital FR QA algorithms can be further developed towards FR print quality evaluation.

Whether or not they could replace the existing complicated and ad hoc metrics in the

printing industry will remain a challenge to be dealt with in future studies.
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