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Abstract

Invariant object recognition is one of the most challenging problems in computer
vision. The authors propose a simple Gabor feature space, which has been success-
fully applied to applications, e.g., in invariant face detection to extract facial features
in demanding environments. In the proposed feature space, illumination, rotation,
scale, and translation invariant recognition of objects can be realized within a rea-
sonable amount of computation. In this study, fundamental properties of Gabor
features, construction of the simple feature space, and invariant search operations
in the feature space are discussed in more detail.

Key words: Gabor filter, invariant object recognition, feature extraction

1 Introduction

Invariant object recognition has been one of the most important topics in
computer vision research for decades. Often the research has focused on in-
variant features. They make invariant recognition possible in a straightforward
manner, but also present some pitfalls as an invariant feature is always a gen-
eralization and may lack some useful information. In addition, a single feature
rarely allows an accurate recognition but relationships between several fea-
tures need to be examined. It seems that requirements of a truly invariant
system cannot be exclusively met with a global invariant feature, such as the
moment invariants; at least not within a reasonable computing complexity.
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Since the study of a general image processing operator by Granlund (1978),
Gabor filters have been used in feature extraction from images. With properly
chosen filter parameters, Gabor filters have similar characteristics to multi-
resolution techniques, such as Gabor expansion and wavelets (e.g. Bastiaans,
1980; Daubechies, 1990; Lee, 1996). Thus, due to duality between Gabor ex-
pansion and Gabor filters it is reasonable to assume that similar properties
can be established also for Gabor filters. The authors have recently proposed
a novel framework utilizing Gabor filter based local features in rotation, scale,
and translation invariant recognition of objects (Kamarainen et al., 2002a;
Hamouz et al., 2003). The framework is based on a feature space constructed
from Gabor filter responses and invariant search operations established in the
feature space. In this study preceding research is concluded by showing the
most important properties of Gabor filters inducing invariance and by describ-
ing the feature space in more detail. The feature space assumes that objects
or their parts can be distinguished by localized features, and in this study par-
ticularly, at only one location. Despite this restriction, the approach performs
outstandingly well in applications, and there is evidence that several local
features can be combined effectively. It should be noted that features them-
selves are not invariant, but simple operations can be established to achieve
illumination, rotation, scale, and translation invariance; some or all of them
simultaneously.

2 Feature Extraction with Gabor Filters

There are two general approaches to use Gabor functions in feature extrac-
tion: i) Gabor expansion and ii) Gabor filtering. In the expansion, Gabor
functions represent distinct, not necessarily orthogonal, pieces of image infor-
mation. A distinct advantage of Gabor functions is their optimality in time
and frequency, or space and spatial-frequency in two dimensions, providing the
smallest possible pieces of information about time-frequency events (Gabor,
1946). Any well-behaving function can be represented as a linear combination
of Gabor functions (Bastiaans, 1980; Gabor, 1946). However, Gabor expansion
requires a computation of biorthogonal analysis functions, which may turn to
a very time consuming task. Thus, it has been more common to use Gabor
functions as analysis filters in image processing. Lades et al. (1993) use Gabor
filter responses at single spatial location, but do not take advantage of existing
invariance properties. Use of Gabor filters is also motivated by the physiology
of mammalian visual system (Daugman, 1985). Nevertheless, image analysis
with biorthogonal counterparts of Gabor functions can be thought as a dual
to the analysis with Gabor filters, and thus, also Gabor filters extract space–
spatial-frequency events from images.

The Gabor’s original 1-d function of time and frequency has been generalized
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to a 2-d function of space and spatial-frequency and several forms have been
proposed (e.g. Granlund, 1978; Daugman, 1985). The authors have defined
the following form of a normalized 2-d Gabor filter function in the continuous
spatial domain (Kyrki, 2002)

ψ(x, y; f, θ) =
f 2

πγη
e
−

(

f2

γ2
x′2+ f2

η2
y′2

)

ej2πfx
′

x′ = x cos θ + y sin θ

y′ = −x sin θ + y cos θ

(1)

where f is the frequency of a sinusoidal plane wave, θ is the anti-clockwise
rotation of the Gaussian envelope and the sinusoid, γ is the spatial width of
the filter along the plane wave, and η the spatial width perpendicular to the
wave.

The form in Eq. (1) is centered to the origin and its response at any location
(x, y) for an image function ξ(x, y) can be calculated with the convolution

rξ(x, y; f, θ) = ψ(x, y; f, θ) ∗ ξ(x, y)
=

∫∫

∞

−∞

ψ(x− xτ , y − yτ ; f, θ)ξ(xτ , yτ)dxτdyτ
(2)

The response of Gabor filter in Eq. (2) is the low-level Gabor feature used
in this study. Next, it is shown how Gabor features can be used to extract
exact information of pose and scale changes when a geometric manipulation
of an input image ξ(x, y) is a function of the Gabor filter parameters: (x, y)
for translation, θ for rotation, and f for scale. Finally, in a feature space
constructed from these Gabor filter responses, invariant search operations can
be established based on the rotation, scale, and translation properties of Gabor
features, which are considered next.

3 Invariance properties of Gabor features

Invariance theorems in this section are not complicated as they result from
the properties of convolution, but will be briefly revisited since the literature
on Gabor filtering seems to lack them and they form the theoretical basis
for the feature space. Similar theorems generally hold for any function, which
maintains the same shape in all translations, scales, and orientations; probably
the most popular examples being wavelets over scales and translations (e.g.
Daubechies, 1990). The Gabor feature in Eq. (2) may provide properties simi-
lar to multi-resolution analysis, and in addition, the feature behaves smoothly
(Kamarainen et al., 2002d), which is difficult to achieve with wavelets. In this

3



sense Gabor filters approximate joint shiftability conditions better than or-
thogonal wavelets (Simoncelli et al., 1992). The following theorems are given
in the continuous domain, where for example the translation invariance is triv-
ial, but the shiftability concept becomes important in the discrete case where
the discrete sampling of parameters may destroy invariance of non-shiftable
functions and transforms. The smooth behavior of Gabor filter responses also
provides tolerance for small object deformations, noise, and image distortions
(Kamarainen et al., 2002c,d).

3.1 Rotation

For an image ξ1(x, y) Gabor feature, the response of normalized Gabor filter
in Eq. (2), at location (x0, y0) is

rξ1(x0, y0; f, θ) =
∫∫

∞

−∞

ψ(x0 − xτ , y0 − yτ ; f, θ)ξ1(xτ , yτ )dxτdyτ (3)

Next, a rotated version ξ2(x, y) of an image ξ1(x, y) is considered, where the
image ξ1(x, y) is rotated anti-clockwise around the spatial location (x0, y0) by
an angle φ as

ξ2(x, y) = ξ1(x̂, ŷ)

x̂ = (x− x0) cosφ+ (y − y0) sinφ+ x0

ŷ = −(x− x0) sinφ+ (y − y0) cosφ+ y0

(4)

By substituting the rotated image in Eq. (4) into the convolution formula in
Eq. (3) and by integrating over integration axes (x′τ , y

′

τ) rotated around the
same point (x0, y0) by the angle −φ it is straightforward to show that

rξ2(x0, y0; f, θ) =
∫∫

∞

−∞

ψ(x0 − x′τ , y0 − y′τ ; f, θ − φ)ξ1(x′τ , y′τ)dx′τdy′τ
= rξ1(x0, y0; f, θ − φ)

(5)

which is due to the rotation property of Gabor features. The rotation prop-
erty appearing as the equivalence in Eq. (5) proves that the response of Gabor
filter for a rotated image is equal to the response of correspondingly rotated
filter for the original image without rotation. This result holds for any con-
tinuous domain function that retains the same shape regardless of orientation
parameter.

3.2 Scaling

Next, an image which is homogeneously scaled version of the image ξ1(x, y)
is considered. The new image is scaled by a factor a as ξ3 = ξ1(ax, ay). A
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response for the scaled image is

rξ3(x, y; f, θ) =
∫∫

∞

−∞

ψ(x− xτ , y − yτ ; f, θ)ξ3(xτ , yτ)dxτdyτ

=
∫∫

∞

−∞

ξ3(x− xτ , y − yτ)ψ(xτ , yτ ; f, θ)dxτdyτ

=
∫∫

∞

−∞

ξ1(ax− axτ , ay − ayτ )ψ(xτ , yτ ; f, θ)dxτdyτ

(6)

By making substitutions

x̂τ = axτ ⇒ dxτ =
dx̂τ

a
, ŷτ = ayτ ⇒ dyτ =

dŷτ

a
(7)

and by respectively re-ordering the variables in Eq. (1), Eq. (6) can be rewrit-
ten as

rξ3(x, y; f, θ) =
∫∫

∞

−∞

ξ1(ax− x̂τ , ay − ŷτ)ψ(x̂τ , ŷτ ;
f

a
, θ)dx̂τdŷτ

= rξ1(ax, ay;
f

a
, θ)

(8)

The scale property of Gabor features, shown by the equality in Eq. (8), proves
the response of Gabor filter for a scaled image to be equal to the response of a
correspondingly scaled Gabor filter at the same relative location of the original
image. The scale property is fundamental for wavelets (Daubechies, 1990) and
holds also for the normalized Gabor filter in Eq. (1) (Porat and Zeevi, 1988).
It is important to note that this property depends on the normalization of the
filter and is not valid for all forms of Gabor filters presented in the literature.

3.3 Translation

In the case of the centered filter in Eq. (1) translation invariant search is
trivial as features using Eq. (2) can be calculated at any location (x, y). For a
translated image

ξ4 = ξ1(x− x1, x− y1) (9)

the response at (x, y) is

rξ4(x, y; f, θ) =
∫∫

∞

−∞

ξ4(x− xτ , y − yτ)ψ(xτ , yτ ; f, θ)dxτdyτ

=
∫∫

∞

−∞

ξ1(x− x1 − xτ , y − y1 − yτ )ψ(xτ , yτ ; f, θ)dxτdyτ
= rξ1(x− x1, y − y1; f, θ)

(10)

which implies the translation property.
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3.4 Illumination

Uniform illumination change can be modeled as a multiplication by a constant.
Let ξ5(x, y) = c ξ1(x, y). By the linearity of the convolution, it can be written

rξ5(x, y; f, θ) = c rξ1(x, y; f, θ) (11)

4 Simple Gabor feature space

According to the properties defined in the previous section it can be stated for
an image ξ6 which is equal to ξ1 but rotated by φ, scaled by a and intensity
multiplied by c, that

rξ6(x0, y0; f, θ) = c rξ1(ax0, ay0;
f

a
, θ − φ) (12)

In general, an equality similar to Eq. (12) can be obtained for all functions,
which retain the same shape regardless of translation, scale or orientation. Yet
the result cannot be easily obtained by e.g. discrete wavelets but it is possible
to inherit important wavelet properties to Gabor functions (Lee, 1996).

So far only features at a single location (x, y) have been considered, but even
then Gabor filters capture information from a remarkable large area, and
thus, by combining responses of several filters in different orientations and
frequencies, surprisingly complex objects can be represented (e.g. Krüger and
Sommer, 2002). For more complicated object structures and objects where
discriminative information at one location is not sufficient, features must be
combined from several spatial locations (Lades et al., 1993; Krüger and Som-
mer, 2002). In that case the invariant properties are more difficult to use, yet
still possible. Since the presented feature space is restricted to a single spa-
tial location, it is referred to as simple, but still being surprisingly efficient
(Kamarainen et al., 2002a; Hamouz et al., 2003).

4.1 Sampling filter parameters

It is clear that a filter bank, consisting of several filters, needs to be used, as
relationships between responses of filters provide the basis for distinguishing
objects. Next, it is considered how the filter parameters should be chosen for
a bank of filters.

The selection of discrete rotation angles θk has already been demonstrated
by Kyrki et al. (2001) and Park and Yang (2001), where it was shown how
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orientations must be spaced uniformly, that is,

θk =
k2π

n
, k = {0, . . . , n− 1} (13)

where θk is the kth orientation and n is the number of orientations to be used.
However, often the computation can be reduced to half since responses on
angles [π, 2π[ are 90◦ phase shifted from responses on [0, π[ in a case of a real
valued input.

In the selection of discrete frequencies fk, exponential sampling must be used
(e.g. Kamarainen et al., 2002a; Daugman, 1988), that is,

fk = a−kfmax, k = {0, . . . , m− 1} (14)

where fk is the kth frequency, f0 = fmax is the highest frequency desired, and
a is the frequency scaling factor (a > 1). Useful values for a include a = 2 for
octave spacing and a =

√
2 for half-octave spacing.

4.2 Feature matrix

Now, using the features in Eq. (2) and the parameter selection schemes in
Eq. (13) and Eq. (14) to cover frequencies of interest f0, . . . , fm−1 and the
orientations for desired angular discrimination, one can construct a feature
matrix G at an image location (x0, y0)

G =




















r(x0, y0; f0, θ0) r(x0, y0; f0, θ1) · · · r(x0, y0; f0, θn−1)

r(x0, y0; f1, θ0) r(x0, y0; f1, θ1) · · · r(x0, y0; f1, θn−1)
...

...
. . .

...

r(x0, y0; fm−1, θ0) r(x0, y0; fm−1, θ1) · · · r(x0, y0; fm−1, θn−1)





















(15)

For convenience, typical matrix indexing is used in G, i.e., G(1, 1) = g1,1 =
r(x0, y0; f0, θ0) and G(m,n) = gm,n = r(x0, y0; fm−1, θn−1). For illumination
invariance, the response matrix can be normalized as

G′ =
G

√

∑

i,j
|gi,j|2

(16)

The feature matrix in Eq. (15) or Eq. (16) can be used as an input feature for
any classifier, e.g., as was used in face evidence detection by Kamarainen et al.
(2002a). If features are extracted using Gabor feature matrix from objects in
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a standard pose, it is possible to introduce matrix manipulations that allow
invariant search. First, a column-wise circular shift of feature matrix can be
defined as

G(θ+k) =
(

G(1 : m, k : n) G(1 : m, 1 : k − 1)

)

(17)

where G(i : j, u : v) represents a sub-matrix of G containing rows i . . . j and
columns u . . . v. It should be noted that if the responses are calculated only
for half orientation space, e.g., [0, π[, the phase wrapping must be taken into
consideration in the column-wise shift. Similarly a row-wise shift for scale
manipulation can be defined

G(f+k) =
(

G(k + 1 : m, 1 : n) G(m+ 1 : m+ k, 1 : n)

)

(18)

The column-wise circular shift in Eq. (17) corresponds to search over all ro-
tation angles, and the row-wise shift in Eq. (18) corresponds to search over
all down-scales. Note that the row-wise shift is not circular but the highest
frequencies (f0, . . ., fk−1) vanish and new lower frequencies (fm+1, . . ., fm+k)
are mapped to the Gabor feature matrix as replacements. A simple method
for performing an invariant classification of objects is demonstrated in Algo-
rithm 1. It should be noted that the complexity of the algorithm depends on
both size of an input image and number of row and column elements in the
feature matrix. Furthermore, the invariance sensitivity can be adjusted to a
desired level by selecting a proper number of row and column elements and
the invariance degree can be adjusted by allowing a proper amount of shift
operations, both these affecting to the complexity of the algorithm.

Algorithm 1 Invariant search of object class at location (x, y)

1: Compute feature matrix G at (x, y)
2: Compute normalized feature matrix G′

3: for all column shifts k do

4: for all row shifts l do
5: (Class, Confidence) = classify

(

G′(θ+k)
(f+l)

)

6: if Confidence > bestConfidence then

7: bestConfidence← Confidence

8: bestClass← Class

9: end if

10: end for

11: end for

To provide a smooth behavior of features, the sharpness parameters γ and η
must be adjusted to have a sufficient overlap of Gabor filters in space and
frequency (Daugman, 1988; Lee, 1996). As a conclusion it can be said that
a very versatile recognition is possible, as rotation, scaling, and illumination
invariance can be achieved.
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5 Experimental results

The simple Gabor feature space introduced in this study has already been
used in several applications, e.g., in rotation invariant and noise robust recog-
nition of electric components by Kamarainen et al. (2002b), and illumination,
scale, translation, and orientation invariant detection of facial evidences by
Kamarainen et al. (2002a) and Hamouz et al. (2003).

In this study, the main contributions are the formulation of the response ma-
trix, which represents the simple Gabor feature space, and the row-wise and
column-wise shifts of matrix corresponding orientation and scale manipula-
tion of an image. A response matrix and the shift operations are illustrated in
Fig. 1, which demonstrates how an invariant detection of facial evidences can
be performed. Rotation of an image induces a circular column-wise shift of
the response matrix, Fig. 1(b), and scaling induces a row-wise shift, Fig. 1(c).

The representation power of Gabor features is demonstrated in Fig. 2 which
shows a reconstruction of an eye image using 16 Gabor filter responses at a
single point. The reconstruction was performed using the coefficients shown
in Fig. 1(a). It can be seen that the filters are able to capture more detail
in the immediate neighborhood of the filter centroid but still preserve coarser
structures in a wide area.

6 Discussion

Motivated by the promising results in applications, the authors have intro-
duced the simple Gabor feature space and its theoretical framework in this
study. The proposed feature space is especially useful in the scale, rotation,
and translation invariant recognition of objects and furthermore it provides
robustness to noise and illumination changes. The feature space is consid-
ered simple since it is spatially localized and thus is aimed to be used with
sufficiently distinguishable objects. Sometimes objects are too complex to be
distinguished in the simple Gabor feature space, but in that case it may be
possible to distinguish salient sub-parts, which can be used as input to a more
general classification systems. This approach has already been successfully
utilized in the face detection presented by Hamouz et al. (2003).

In this study, the motivation was to inspect the feature space itself and to
present the theory behind the methods, including the invariant properties in
Eqs. (5), (6) and (10), the construction of the feature matrix at one location
in Eq. (15), and the rotation and scale invariant search operations by formulas
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Fig. 1. Original image and its rotated and scaled versions, and correspond-
ing feature matrice magnitudes computed at the centroid of the right eye
(fk = 1/14, 1/28, 1/56, 1/112, γ = 1, η = 1, θk = 0◦, 45◦, 90◦, 135◦). For rota-
tion note that the image origin is in the upper left corner. (a) original image. (b)
rotated anti-clockwise by 45◦. (c) rotated and scaled by 0.5×.

in Eqs. (17) and (18).

The proposed Gabor features lie somewhere between shiftable operators (Si-
moncelli et al., 1992) and orthogonal wavelets. In the future it would be in-
triguing to study what kind of advantages can be achieved with this kind
of features, which approximate the shiftability of steerable functions and the
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Fig. 2. Reconstructed image using 16 Gabor filter coefficients. (a) original. (b) re-
construction.

orthogonality of separable wavelets.
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Kyrki, V., Kamarainen, J.-K., Kälviäinen, H., 2001. Content-based image
matching using Gabor filtering. In: Proceedings of the International Con-
ference on Advanced Concepts for Intelligent Vision Systems Theory and
Applications. Baden-Baden, Germany, pp. 45–49.
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