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ABSTRACT
Facial age estimation, to predict the persons’ exact ages
given facial images, usually encounters the data sparsity
problem due to the difficulties in data annotation. To miti-
gate the suffering from sparse data, a recent label distribu-
tion learning (LDL) algorithm attempts to embed label cor-
relation into a classification based framework. However, the
conventional label distribution learning framework only con-
siders correlations across the neighbouring variables (ages),
which omits the intrinsic complexity of age classes during
different ageing periods (age groups). In the light of this,
we introduce a novel concept of robust label distribution
for scalar-valued labels, which is designed to encode the age
scalars into label distribution matrices, i.e. two-dimensional
Gaussian distributions along age classes and age groups re-
spectively. Overcoming the limitations of conventional hard
group boundaries in age grouping and capturing intrinsic
inter-group dependency, our framework achieves robust and
competitive performance over the conventional algorithms
on two popular benchmarks for human age estimation.

Keywords
facial age estimation; hard group boundaries; robust label
distribution learning (RLDL)

1. INTRODUCTION
Facial age estimation [5, 9, 10, 14, 21, 22, 27] is to pre-

dict persons’ age given their facial images, which is a hot
yet challenging topic in computer vision. This problem and
other similar problems such as crowd counting [2, 5, ?, 6, 7]
are aimed to learn a mapping function from imagery feature
representation to scalar-valued targets. However, due to in-
herent ambiguities in age annotation, data sparsity problem
is encountered with the lack of sufficient samples for cover-
ing the whole data distribution. For example, a large num-
ber of facial images can be readily found on the Internet,
but reliable annotation of the exact age of images is usu-
ally lacking, which leads to sparsely distributed data [5] in
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Figure 1: Conventional hard boundaries between age groups.

the public benchmarks such as the FG-NET and MORPH
datasets. Sparse data distribution can increase the difficulty
in learning a robust mapping function, which thus leads to
poor performance of the existing algorithms especially for
those age classes without sufficient training data.

Human age estimation is usually formulated into a multi-
class classification problem [15, 18] or a single-variate re-
gression problem [5, 16, 17, 27]. Compared to classification
based algorithms, regression frameworks are more favourable
owing to the inherently cumulative and dependent charac-
teristics of facial age estimation, i.e. the closer age labels
of two facial images are, the more visual similarity they
share. Recently, label distribution learning (LDL) was pro-
posed by Geng et al. [13, 14] to represent each target scalar
with a vector-formed label distribution which represents la-
bel correlation in classification frameworks in the fashion of
multi-labels. Compared to 1-of-K target coding in the clas-
sic one-vs-all multi-class classification, label distribution vec-
tors have positive values for neighbouring samples instead of
zero, which can contribute to transferring the knowledge of
neighbouring classes to those age classes without any train-
ing samples. For intuitive explanation, let us take one cer-
tain age (e.g. age 40) as an example, which can be learnt
indirectly from the samples of neighbouring ages such as
39 and 41, even when age 40 has few or even no training
samples, as element-wise difference of predicted and ground
truth label distributions are designed to enforce to the min-
imal. In other words, the entry for age 40 class in label
distribution can also be trained when training samples with
the positive value on the element for age 40 class in LDL (e.g.
39 or 41). In the light of this, label distribution learning can
mitigate the suffering from sparse data.

Assuming a fixed age label distribution, the conventional
label distribution learning (LDL) framework [14] is limited



by intrinsic complex relationship across age classes because
of inconsistent ageing patterns as well as sensitiveness to
personal identities and head poses. Adaptive label distri-
bution learning [11] was proposed to model the inconsistent
ageing patterns by iteratively updating dynamic label dis-
tribution for each age group, but it still adopted and thus
suffered from hard boundaries between chronological age
groups. We observe that facial images for age estimation
have inter-group correlation during different ageing periods
(age groups), which have not been exploited in label dis-
tribution learning. Specifically, inter-group correlation can
be considered to reflect the global piecewise-like relationship
of age labels in terms of localised chronological age groups
corresponding to varying ageing periods. Moreover, conven-
tional hard age group boundaries shown in Figure 1 were
widely employed [11, 20, 21, 22], which relied heavily on
the accuracy of age group classification. In other words,
misclassification on coarse age groups can lead to signifi-
cant performance reduction on the following fine age esti-
mation. A naive solution [22] to improve the robustness led
by age group misclassification is to employ the overlapping
age ranges but such a strategy is data-specific sensitive to
the size of the overlapped age ranges.

Motivated by the aforementioned observation, we intro-
duce a novel concept of robust label distribution for single-
variate scalar-valued problems, e.g. facial age estimation,
which can simultaneously address both challenges in a unique
framework. In the proposed framework, we attempt to jointly
minimise the estimation errors along both age class and
group distribution in order to improve the robustness of
the conventional label distribution learning framework. Ow-
ing to the introduction of an additional group distribution
dimension in our framework, both suffering of cross-group
dependency and hard group boundaries are alleviated in ad-
dition to the capability to cope with data sparsity inher-
ited from conventional LDL framework. Experiments on two
popular age estimation benchmarks verify the effectiveness
of our framework with superior performance over conven-
tional algorithms.

2. RELATED WORK
The recent methods for estimating human age given facial

images can be divided into three categories: classification
based [15, 18], regression based [16, 17, 27], and ranking
based [4, 23]. Facial age estimation was firstly formulated
into a multi-class classification problem, but those classifi-
cation based algorithms [15, 18] omitted the latent corre-
lation across age labels, i.e. the closer age labels of facial
images are, the more visually similar they are as well. Re-
gression base frameworks [5, 16, 17, 27] are usually consid-
ered more suitable for age estimation owing to cumulative
dependent nature of regression labels. Recently, a ranking
based method, namely OHRank, was proposed [4] by util-
ising a series of ordinal hyperplane (i.e. binary classifiers)
with all the data in the dataset in order to mitigate data
sparsity problem, but it is extremely expensive to train such
a model. Chen et al. [5] exploited the cumulative nature
across age classes to achieve robust performance in a two-
layer attribute learning framework. Geng et al. [14] designed
a framework by learning from label distributions in the man-
ner of multi-label learning. For each instance, a label dis-
tribution (e.g. Gaussian distribution) was first generated to
give the degree that the neighbouring class labels describe

the instance. Such a learning paradigm designed for data
sparsity problem can improve the performance owing to the
reduction of ambiguity in the label space by using multi-
labels instead of a single label. However, learning with label
distribution [14] (or termed, learning with soft labels) only
considered increasing the global discrimination by incorpo-
rating consistent local label relations, which is not valid be-
cause of dynamic ageing procedure. An advanced attempt
of label distribution learning with adaptively updating label
distribution for each age group was introduced in [11], but
hard group boundaries can still have a negative effect on
performance. As a result, to capture complex relationship
across ages, we propose a framework to learn with over-
complete robust label distribution (RLD) for age estimation
in the fashion of soft group boundaries to incorporate inter-
dependency across groups and improve the robustness of age
grouping. Our performance is superior to the conventional
approaches on two public benchmarking datasets justifying
the usage of robust label distributions.

3. METHODOLOGY
Given imagery feature representation x and its correspond-

ing age label y, training samples consist of {xi, yi}i=1,2,...,N ,
where N denotes the number of training samples. The
pipeline of the proposed algorithm is given as follows:

• We first construct a two-dimensional robust label dis-
tribution L for each training sample according to its
relative position y in a “chronological age map”, which
adopts different Gaussian distributions along age la-
bels and groups (See Sec. 3.1).

• Learning the mapping between imagery feature repre-
sentation x and a robust label distributionL is achieved
by employing multivariate distribution learning in Sec.
3.2.

During testing, imagery features of an unseen image are fed
into the trained model to estimate the person’s age with the
maximum predicted description degree along age classes in
robust label distribution.

3.1 Robust Label Distribution
We first investigate the framework about one dimensional

label distribution along age classes proposed by Geng et al.
[14] to lay the basis for further discussion. Given a scalar-
valued age label y ∈ R, a label distribution vector y ∈ RK
with the sum of description degree dx (real values) of all the
labels equal to one can be obtained, where K denotes the
size of age range. The assumption of label distribution is
two-fold: a) true labels have the highest description degree
in y; and b) the farther labels are away from true labels, the
lower description degree they have. It is noted that non-zero
description degree in a label distribution vector reflects am-
biguity of feature-label relationship, which also indicates the
importance of neighbouring labels contributing to the exact
label y associated to instance x. In this sense, even without
sufficient training samples, label distribution learning can
also achieve robust performance. Typical label distributions
are Gaussian and triangle distributions [14], and Gaussian
distribution can keep consistently superior performance to
triangle distribution, which encourages us to employ Gaus-
sian distribution in the experiments of this paper.

Aiming to incorporate inter-correlation across different
ageing patterns and improve the robustness against hard



age grouping, we propose an over-complete two-dimensional
label distribution, namely robust label distribution, for a
scalar-valued target. Conventional label distribution for hu-
man age estimation in [11, 14] is designed only along the
chronological age dimension, but the proposed RLD extend
an extra dimension along age groups. To construct a RLD
L ∈ RK×D for each instance x with D denoting the number
of age groups, we first divide the whole age range into D sub-
sets by their chronological ages via either manually-defined
or clustering. Here we adopt manual definition as it is
straightforward to define age groups G = {G1, G2, · · · , GD}
(typically each [−5,+5] interval forms a group). Conse-
quently, the scalar label y have extended to a two-dimensional
ȳ composed by its age label and group label. As mentioned
before that Gaussian distribution is preferred in [14], we
adopt a discretized bivariate Gaussian distribution [12] an-
chored at the extended label ȳ in RLD:

dx(z) =
1

2π
√
|Σ|F

exp(−1

2
(z − ȳ)TΣ−1(z − ȳ)),

where the variable z is other labels in RLD besides ȳ and F
is a normalisation factor to make the sum of dx be one. Con-
sidering different characteristics of distribution along age
classes and groups, we set the covariance matrix Σ ∈ R2×2 as
a diagonal matrix with two finest granularity for age classes
and groups respectively. Evidently, with the introduction
of a group distribution in RLD, the following advantages
are achieved: 1) utilise interdependency across age groups
reflecting different ageing patterns with multi group labels
instead of a single label; and 2) attempt to replace hard
group boundaries with soft group distribution to improve
robustness.

3.2 Learning with RLD
With the generated RLD for each image, the training

set becomes {x,L}i, i = 1, 2, · · · , N . Element Ljk, j =
1, 2, · · · ,K, k = 1, 2, · · · , D of L ∈ RK×D consists of jth age
class label and kth group label. The aim is to learn a con-
ditional density function p(ȳ|x;θ) to minimise the distance

between the predicted L̂ generated by θ and the ground
truth L, where θ is the parameter vector to be optimised.
It is evident that the learning with robust label distribu-
tion becomes a multi-variate distribution learning problem,
which has been well presented in [12].

The object function for robust label distribution learning
can be written as:

min
θ

∑
i

P (Li||p(ȳi|xi;θ)), (1)

where weighted Jeffrey’s divergence P (La||Lb) is to measure
the similarity between two distributions La and Lb with con-
sidering inter-element relationship, which can be formulated
as the following:

P (La||Lb) =
∑
w,h

λw,h(Lwa −Lhb ) ln
Lwa
Lhb

, (2)

where Lwa and Lhb denote the wth and hth element in La
and Lb respectively, and λ is used to weight the relationship
across elements. Evidently λ is an important factor to model
underlying correlation of neighbourhood among ages. In this
paper, we adopt the same λ setting in [12] to reflect localised
correlation of the nine neighbouring points in robust label

distribution space as

λjkmn =
1

F
exp(

‖ȳjk − ȳmn‖2

−δ ), (3)

where F is normalised term, ȳjk and ȳmn are jkth corre-
sponding label in the ground truth RLD L and mnth label in
the predicted RLD p(ȳi|xi;θ) respectively. δ is a parameter
to adjust influence of the distance between ȳjk and ȳmn.

Let us assume a maximum entropy model [1] as

p(ȳmn|xi;θ) =
exp(

∑
r θmn,rx

r
i )∑

m,n exp(
∑
r θmn,rx

r
i )
, (4)

where xri denotes the rth entry of feature xi and θmn,r
is the element of θ associated to the label ȳmn and rth
feature element. Substituting Equations (2) and (4) into (1)
reformulates the object function as

min
θ

∑
i

ln(
∑
m,n

exp(
∑
r

θmn,rx
r
i ))+

∑
i,j,k,m,n

λjkmn[
exp(

∑
r θmn,rx

r
i )∑

m,n exp(
∑
r θmn,rx

r
i )
×

(
∑
r

θmn,rx
r
i − ln(

∑
m,n

exp(
∑
r

θmn,rx
r
i ))−

ln dxi(ȳjk))− dxi(ȳjk)
∑
r

θmn,rx
r
i ],

which can be solved by using limited-memory quasi-Newton
method L-BFGS introduced in [19]. The advantages of L-
BFGS is to avoid the expensive Hessian matrix inversion but
iteratively approximate its inverse.

4. EXPERIMENTS
Datasets and Settings – For evaluating the proposed
framework, two public benchmarks, FG-NET [4, 5, 15, 16,
27] and MORPH [4, 5, 15], were used. Specifically, the FG-
NET dataset contains 82 persons varying from age 0 to age
69 with 1002 images in total, while the MORPH dataset
covers the range of age 16 to age 77 with 5475 images1.
Active Appearance Model (AAM) feature [8] is adopted as
low-level imagery features because of its popularity in the
recent works [4, 5, 15, 16, 25, 26, 27]. We followed the same
leave-one-person-out setting as in [4, 5, 16, 25, 26, 27] for
FG-NET, while the MORPH dataset was randomly split into
80% data for training and the remaining 20% for testing and
we repeated the experiments 30 times as in [4, 5]. We em-
ployed two evaluation metrics, namely Mean Absolute Error
(MAE) and Cumulative Score (CS) with the error level 5 as
in [4, 5, 15].

Comparison to State-of-the-Art – Comparative results
on two benchmarks are given in Table 1. Among those algo-
rithms, RUN [26], Ranking [25], LARR [16], LSLR [24], SVR
[16], CA-SVR [5] are regression based and RED-SVM [3] and
OHRank [4] are ranking based, while the rest are classifica-
tion based. All comparative evaluation are using the identi-
cal AAM features except AGES [15]. Evidently, our robust
label distribution learning can consistently achieve the best
performance over state-of-the-arts especially label distribu-
tion learning based frameworks including IIS-LLD, CPNN,

1The size of MORPH has increased to 55,608 images (MORPH-
II), but we use the original MORPH dataset for fair comparison
with the existing algorithms [3, 4, 5, 15, 16, 27].



Figure 2: Data distribution (left plot) and comparative performance (right plot) on the FG-NET benchmark of the proposed
BFGS-RLDL with AGES [15], IIS-LLD [13], CPNN [14], and BFGS-LDL [10] in different age range.

Table 1: Age estimation performance comparison.

Methods FG-NET [15] MORPH [4]
MAE CS MAE CS

AGES [15] 6.77 – 8.83 –
RUN [26] 5.78 – – –
Ranking [25] 5.33 – – –
RED-SVM [3] 5.24 – 6.49 –
LARR [16] 5.07 – – –
MTWGP [27] 4.83 – 6.28 –
LSLR [24] 5.25 – – –
OHRank [4] 4.85 74.4% 5.69 56.3%
SVR [16] 5.66 68.0% 5.77 57.1%
CA-SVR [5] 4.67 74.5% 5.88 57.9%
IIS-LLD [13] 5.77 – – –
CPNN [14] 4.76 – – –
BFGS-LDL [10] 5.23 69.4% 5.94 56.5%
BFGS-RLDL 4.27 76.2% 5.69 59.2%

and BFGS-LDL on both benchmarks. The most direct ef-
fect of using robust label distribution can be observed by
comparing between BFGS-LDL [10] and BFGS-RLDL, while
BFGS-RLDL significantly beat BFGS-LDL. Since using the
identical low-level AAM features and using the same op-
timisation algorithm BFGS, the performance improvement
can only be explained by superior robust label distribution
proposed in this paper.

Evaluation on Different Age Ranges – We visualise
the data distribution and also comparative performance of a
number of algorithms on the FG-NET benchmark in Figure
2. It can be observed that, compared to LDL based algo-
rithms (IIS-LLD [13], CPNN [14], and BFGS-LDL [10]), the
proposed RLDL can reduce errors when the size of train-
ing samples for a specific group is sufficient and yet achieve
comparable performance for sparse data. The explanation
for such a phenomenon is that soft group distribution for
sparse data can be different from the dense data. With im-
balanced data, our model is enforced to drift to the young
ages during optimisation for the lower mean error over all
samples. This observation inspired us to improve the design
for age grouping to reflect the dynamic ageing patterns.

Figure 3: Effect with varying size of age classes in each group
on the FG-NET dataset.

Effect with Varying Age Group Size – The size of age
groups is an important parameter to decide the complexity
of label distribution in view of the dimension of RLD linearly
proportional to the size of age groups. Figure 3 illustrates
the effect on the varying age group size. Figure 3 shows that
the size of age groups plays an important role on the success
of the algorithm. However, even the worst results of RLDL
in Figure 3 are still superior to the existing algorithms, which
further demonstrates its effectiveness.

5. CONCLUSIONS
This paper proposes a novel over-complete label distri-

bution learning framework for visual regression. For facial
age estimation our framework achieves superior accuracy as
compared to conventional methods with hard age class and
group boundaries. In our future work, unsupervised con-
struction of the label distribution and more advanced design
on incorporating group information into label distribution
will be investigated.
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