
CASCADE PROCESSING FOR SPEEDING UP SLIDING WINDOW SPARSE
CLASSIFICATION

Katariina Mahkonen, Antti Hurmalainen, Tuomas Virtanen, Joni-Kristian Kämäräinen
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ABSTRACT
Sparse representations have been found to provide high
classification accuracy in many fields. Their drawback is the
high computational load. In this work, we propose a novel
cascaded classifier structure to speed up the decision process
while utilizing sparse signal representation. In particular,
we apply the cascaded decision process for noise robust
automatic speech recognition task. The cascaded decision
process is implemented using a feedforward neural network
(NN) and time sparse versions of a non-negative matrix
factorization (NMF) based sparse classification method of
[1]. The recognition accuracy of our cascade is among the
three best in the recent CHiME2013 benchmark and obtains
six times faster the accuracy of NMF alone as in [1].

Index Terms— Automatic speech recognition, non-
negative matrix factorization, cascade classification, cascade
processing

I. INTRODUCTION
Classification based on sparse representations (SR) [2],

originally invented for image processing [3], has raised to
be very popular and provides state-of-the-art results in many
disciplines. The model is specifically suitable for modeling
data that consists of multiple sources. Recent application
fields are for example classification of handwritten characters
[4], [5], tracking and classification of vehicles in videos
[6], MRI image analysis [7] and EEG signal analysis [8].
Some works [2], [9] no less optimize the sparse object
representation specifically for classification.

In the field of audio processing SR have been also
widely used, for example in audio classification [10], source
separation [11] and content analysis [12]. Also, in the
recent CHiME 2013 evaluation [13] the best noise-robust
automatic speech recognition (ASR) results [1], [14], [15],
[16] were achieved using the sparse non-negative matrix
factorization (NMF) method of [1] in combination with two
other methods. However, the drawback of SR acquired by it-
erative non-negative matrix factorization (NMF) algorithms,
despite the work on faster algorithms [5], [17], is their high
computational demand.

On the other hand, in the field of computer vision, for
example, in face recognition [18] and in object detection
[19], cascade processing has been succesfully used to boost

Fig. 1. Block diagram of the proposed ASR cascade.

the decision process. Whenever the difficulty of the classifi-
cation task of the input is not known beforehand, the amount
of processing can be regulated with a cascade. The simple
decisions can be made with less computing while the most
sophisticated methods are used at ambiguous cases.

In this work, our aim is to bring spectrogram factorization
based noise robust automatic speech recognition closer to
real time, while not sacrificing accuracy. Our strategy to
reduce computational load is to build a cascade of classifiers
(Figure 1), where the amount of computation is determined
according to the interpretability of the input. The decision
about instantaneous speech content can be made with simple
classifiers if the certainty of the estimate is high enough.
Estimation certainty assessment in automatic speech recog-
nition has been studied e.g. in [20] and [21], but we propose
a simple probability score (section III-C). For our cascade,
we develop a time sparse version (TS-NMF) of the NMF
method of [1]. We present also an evenly time sparse NMF
(ETS-NMF) as a comparison to the cascade structure.

II. DECISION CASCADE

A decision cascade (DC) for a classification task con-
stitutes of multiple stages where on each the confidence
on the input class is evaluated and the decision about
completion of the recognition process can be made. This
stage-wise processing accounts for the high computational
savings that are possible with a DC. A DC is able to preserve
the recognition accuracy while at the same time evading
redundant computation via early decisions. The effectivity
of a DC results from the fact that the easily distinguishable



inputs can be recognized with less processing, i.e. with fast
classifiers, while heavier and the most accurate methods
need to be executed only for the most ambiguous inputs.
The general cascade decision process for classification is
presented in Algorithm 1.

There are two functions of special importance within the
algorithm, namely f READY

s (I) ∈ {false, true} and f CLASS
s (I) ∈

C (class labels). f READY
s is used to decide whether the

decision is ready at stage s, and f CLASS
s gives the class

prediction at the stage s.

Algorithm 1: Decision cascade of N stages.
Input: an item x to be classified
Output: class decision C

1 Set READY = false
2 Set S = 0
3 while READY 6= true ∧ S ≤ N do
4 S = S + 1
5 C = f CLASS

S (x)
6 READY = f READY

S (x)

7 return C

III. PROPOSED SPEECH RECOGNITION
CASCADE

In ASR a speech signal is converted to sequence of words.
Each word is modeled as sequence of states, and likelihoods
Lt of states are estimated in short frames, indexed by t.
Due to continuous nature of audio signal, the final class
decisions are made following a hidden Markov model of the
grammar by the Viterbi algorithm, in contrast to independent
classification in Algorithm 1 used in [18] and [19].

The stages of the proposed cascade are used to provide
increasingly accurate state likelihood estimates, which are
accumulated into a state likelihood matrix Ls. Thus the line
5 of Algorithm 1 is replaced with Lst = fLs (xt), where
Lst ∈ RNc×1 and Nc is the number of states in the grammar.

The proposed ASR cascade aims at speeding up a com-
putationally intensive, but well performing method based on
SR and NMF. The cascade works maximally at 6 stages
as shown in Figure 1. The first stage uses a NN and
subsequent stages use TS-NMF method up to five times to
make f READY

s = true if possible. The order of methods within
the cascade is defined by the computation time they need to
extract the state likelihood information.

Both methods in our cascade extract spectral features of
the audio in a 25 ms frame after every 10 ms.

III-A. Neural Network classifier
The NN classifier at the first stage of the cascade has

a topology of two hidden layers, 200 neurons each, and
the output layer with Nc neurons. All the neurons use the
sigmoid function. The input to the NN is formed of 40 Mel

cepstrum coefficients (MFCCs) and delta MFCCs, together
80 features.

Interpretation of NN-output values as probabilities has
been investigated in several works, e.g. [22], [23], [24], but
we convert NN outputs yt to Bayesian posterior probabilities
of states as

LNN
t (c) = P

(
yt(c) | c

)
P (c)

/
P
(
yt(c)

)
, (1)

with equal priors P (c). For each class c ∈ C, a his-
togram based probability density functions (PDF) P (y(c))
and P (y(c)|c) are collected from the training data.

III-B. Time Sparse NMF classifier

The later stages of our decision cascade adapt a time
sparse versions (TS-NMF) of the original NMF classifier [1].
The NMF classifier processes the input signal in windows
of T = 20 frames. Spectral magnitudes from B = 40 Mel
bands from the T frames of a window make an input vector
xt of length BT for NMF classifier.

A dictionary D ∈ R(BT )×Nd

+ of Nd = 10000 such
example vectors from training material is used for modeling
the input as x̂t = Dwt, where wt holds non-negative scores
of dictionary elements. The scores wt are solved iteratively
minimizing Kullback-Leibler divergence between x̂t and xt,
which is computationally the heaviest part of the method.
Half of the example spectrograms in the dictionary are taken
from speech content and the other half from the noise part
of training data, notated as D =

[
Dspeech,Dnoise

]
.

State likelihood estimation from scores wt is done accord-
ing to equation (2). Each example vector in Dspeech entails
state labels for T consecutive frames. The labels are encoded
as binary matrices Ld ∈ {0, 1}Nc×T to allow mapping the
scores wt to state likelihoods. An NMF state likelihood
window LNMF

t spans over time points t . . . t + T − 1 and
is given by

LNMF
t =

Nd/2∑
d=1

Ld ·wt(d). (2)

In this work we are targeting to reduce computational
load, while not giving up the accuracy achievable with a
computationally heavy method. The NMF in [1] performs
the classification with overlapping windows where an NMF
window is factorized for each frame t = 1, 2, 3, . . .. For
evenly time sparse NMF (ETS-NMF) a new NMF window
is factorized at uniformly spaced frame indices, while in TS-
NMF the NMF windows to be factorized can be selected
freely. When evaluating ETS-NMF, we found out that with
sparsity p = 3, i.e. factorizing NMF windows for every third
t, ETS-NMF produces enough state likelihood information
to achieve the accuracy of [1]. Thus in our ASR-cascade,
the NMF factorization is allowed only for every third t.



Fig. 2. Schema of constructing state likelihoods by NN - TS-NMF cascade processing. The state likelihood matrix LNN

(white background) is computed at the first stage. The colored curves represent values of Cs after each stage s. The threshold
θ is shown with the straight line. Where Cs does not exceed θ, NMF windows (shaded rectangles) are taken into use by
stage s+ 1. Red bars show the value of nt at each t.

III-C. Cascade decisions
To decide whether the stage s + 1 should be used to

improve state likelihood estimations, the function

f READY(Ls, t, θ) =

{
true if Cst ≥ θ
false else

, (3)

is used. f READY makes its decisions based on state likelihood
matrix Ls and threshold θ. In (3), Cst represents the certainty
of the information in Ls at time point t as

Cst =
1

2l

t+l−1∑
τ=t−l

maxLsτ

The state likelihoods Lst are calculated as a weighted sum
of likelihood information acquired from LNN given by the
NN stage and sets

{
LNMFi

}
for TS-NMF stages i = 2 . . . s

as

Lst = (1− nt
m

) · LNN
t +

nt
m
·

[
s∑
i=2

T∑
τ=1

LNMF(i−1)
t−τ+1 (τ)

]
1

,

where [·]1 denotes normalization to the `1 length 1. nt
is determined by the number of overlapping NMF state
likelihood windows at t and m = 12 is used, as it gave
the best results. The procedure is elucidated in Figure 2.

The selection of points τ for NMF windows LNMF(s−1)
τ

at each TS-NMF stage s is done as follows. First, each
interval of t where f READY(Ls, t, θ) = false is enlarged
back- and forward by T/2 frames to yield target domain
intervals for the new NMF windows. For each interval
τα . . . τω , J = d(τω − τα + 1)/T e new NMF window
slots τj , j = 1 . . . J , from U unused slots are selected
if possible. The K = U − J slots are left unused as
evenly distributed as possible. Finally a new set of NMF
factorizations is computed to produce the set of state like-
lihood windows

{
LNMF(s−1)
τj for j = 1 . . . J

}
. New NMF

state likelihood windows are generated at subsequent stages
until f READY(Ls, t, θ) = true ∀ t or the end of the cascade
is encountered. In Figure 2 the set

{
LNMF1
τj for j = 1 . . . 6

}
produced at the second stage of the cascade is illustrated as
the uppermost row of shaded NMF windows.

III-D. Utilizing state unions

In the state space of the used grammar there are many
states representing the same phone in different words. For the
cascade, it is more advantageous to report the likelihood of
a phone instead of a designated state among the phonetically
similar states. Thus, considering correlations of the NN out-
put on training data and the states’ power in discriminating
words, we selected 11 groups to be used as unions. States
of the grammar, marked as ‘word‘state, within unions are
U1 = {‘b‘2, ‘v‘2}, U2 = {‘b‘3, ‘v‘3, ‘p‘3, ‘g‘3, ‘d‘3}, U3 =
{‘c‘3, ‘t‘3}, U4 = {‘b‘4, ‘v‘4, ‘p‘4, ‘g‘4, ‘d‘4, ‘e‘4, ‘c‘4, ‘t‘4},
U5 = {‘a‘4, ‘j‘4, ‘k‘4}, U6 = {‘i‘4, ‘z‘2}, U7 = {‘m‘1, ‘n‘1},
U8 = {‘m‘4, ‘n‘4}, U9 = {‘f ‘1, ‘s‘1}, U10 = {‘g‘1, ‘j‘1} and
U11 = {‘q‘4, ‘u‘4}.

In Lst the likelihoods of the states within an union are
substituded with the highest of them as

Lst (c ∈ Ui) = max {Lst (c ∈ Ui)}

for i = 1 . . . 11. The keyword accuracies of both the NMF-
and NN-recognizers outside the cascade when using state
unions are reported in the experiments (Table I).

IV. EVALUATION

The evaluation is done using CHiME2013 automatic noisy
speech recognition challenge track 1 data [13], which con-
sists of utterances from 34 speakers in highly non-stationary
background of domestic noise. Average SNR varies from
−6 dB to 9 dB. The spoken sentences have strict grammar
with 51 words. The state space used to represent the words
is defined by the CHiME2013 challenge baseline system
and has 4-10 states per word, Nc = 250 states in total.
The speciality of this data set is the task of recognizing
’coordinates’ composed of a letter and a number, e.g. ’D7’.
There are 500 and 600 sentences per each SNR level in the
training and evaluation set, respectively. The training data is
used for training the NN and picking the example vectors for
dictionary D of NMF. The presented recognition accuracies
are achieved with the evaluation data set.



0 5 10 15 20 25 30 35
74

78

82

86

90

94

Amount of required NMF computation (%)

K
ey

 w
or

d 
re

co
g.

 a
cc

. (
%

)

 

 

0 5 10 15 20 25 30 35
74

78

82

86

90

94

Amount of required NMF computation (%)

K
ey

 w
or

d 
re

co
g.

 a
cc

. (
%

)

 

 

The proposed cascade
Time sparse NMF + SU
Time sparse NMFclean

SNR=9dB
6dB
3dB
0dB
−3dB
−6dB

0.24

θ = 0.51

0.50
0.24

0.24
0.56

0.58

0.50
0.510.57

0.31

0.24
0.24

0.24 0.24
θ = 0.24

Fig. 3. The keyword recognition accuracies of the proposed cascade versus its computational load. The curves build up by
changing the threshold θ of fREADY in eq. (3). The axes on the left show the different SNR levels separately and the average
performance is shown on the right. Triangles show average accuracies of ETS-NMFp with sparsities p = 3, 4, 5, 7, 10, 20.

IV-A. Performance with ETS-NMF, NN and state unions
The keyword recognition accuracies on evaluation data

with ETS-NMF and the used NN classifier outside the cas-
cade are shown in Table I. The ETS-NMF classifier with time
sparsity p = 3 utilizing state unions (SU) ’ETS-NMF3+SU’
reaches recognition accuracy 87.3 % on average over all the
noise conditions. Without SU post processing, ’ETS-NMF3’
can be seen to reach the level of the reference ’NMF[1]’.
These average accuracies of ETS-NMF3 are shown also as
the rightmost triangles in Figure 3. The positive effect of
utilizing state unions on ETS-NMF is 0.8 % on average.

The NN classifier of the first stage of the cascade,
’NN+B+SU’ in the Table I, reaches accuracy 72.6 % on
average. The positive effects of Bayesian post processing
(B) of NN outputs and utilizing state unions (SU) are about
1.5 % and 0.9 % respectively.

SNR mean -6dB -3dB 0dB 3dB 6dB 9dB
ETS-NMF3+SU 87.3 75.4 82.4 87.8 91.3 93.0 93.5
ETS-NMF3 86.6 75.1 82.0 87.4 89.9 92.3 92.8
NMF [1] 86.5 75.6 81.4 87.5 89.9 92.4 92.3
NN+B+SU 72.6 56.4 58.3 66.5 74.8 79.3 82.1
NN+B 71.7 55.0 57.5 65.9 73.8 78.6 81.1
NN 70.2 54.5 54.8 63.7 71.2 77.8 79.8

Table I. Keyword recognition accuracies with ETS-NMF3
and NN classifiers with and without using state unions (SU)
and Bayesian post processing (B).

IV-B. Accuracy and computational load of the cascade
The operating point of the proposed cascade is defined

by the threshold θ of f READY in (3), which rules the usage
of stages of the cascade. The threshold θ is set to achieve
a desired accuracy with as small computational load as
possible, or to reach as good accuracy as possible with the
available computation power. Curves of keyword recognition
accuracy, resulting from giving different values for θ, versus
the amount of needed NMF computation as percentage of

the computational load of [1] are shown in Figure 3. On
these curves we pay attention specifically to two operating
points. The first one, shown with a cross on each curve, is
the operating point with θ = 0.24. It is where the average
accuracy reaches 86.5 %, the accuracy of the original NMF
framework [1] requiring only 16.0 % of its computation.
The second crucial operating point of the cascade, which
is shown as a circle on each curve, is where the maximal
keyword recognition accuracy is reached with smallest com-
putation load. On average over all noise levels, this operating
point occurs with θ = 0.51 reaching accuracy 88.5 % and
requiring the computation of 31 % of NMF frames.

IV-C. Comparison to state-of-the-art

The recognition accuracy of the proposed cascade ranks
among the three best in CHiME 2013 challenge Track 1
results in [25]. However, an important aspect of required
computational resources was not considered in CHiME 2013
evaluation. Thus in Table II we compare the results with the
proposed cascade in comparison to the methods for which
we can estimate the computational load: the NMF method
of [1] and the winning method [26] of CHiME2013. The
computation time of the CHiME2013 winner is obviously
higher than NMFs as NMF [1] is one of the three methods
in the winning classifier combination.

accuracy computation time
CHiME2013 winner [26] 92.8 > 100 % ∗)
Proposed cascade at θ = 0.510 88.5 30.9 %
ETS-NMF3 87.3 33.6 %
Proposed cascade at θ = 0.237 86.5 16.0 %
NMF [1] 86.5 100 %

Table II. Keyword recognition accuracy of the proposed
cascade in comparison to the baseline NMF method and the
CHiME2013 challenge winning method (∗ utilizes the NMF
method as one of its three detectors).



V. CONCLUSIONS

As automatic noisy speech recognition has proved to be
hard problem to solve, the most accurate methods currently
are far from real time processing. With clean speech simpler
methods might do well, while with noisy environment the
more advanced processing is required. A decision cascade is
a way to combine these and it is a structure to consider when
one wants to meet both the requirements, word accuracy and
computational speed, in varying conditions. In this work we
have showed that a decision cascade can be successfully
applied in ASR task. Our experiments show that the accuracy
of well performing NMF method for noisy ASR can be
achieved with a fraction of its computation time with a
decision cascade utilizing faster classifiers. In CHiME2013
keyword recognition task with our cascade utilizing a neural
network and Time Sparse NMF classifiers we achieve the
meritorious accuracy of [1] with less than 17 % of its
computation time. The full accuracy of the cascade ranks
among the three best in CHiME 2013 Track 1 challenge
and it is three times faster than the winner.
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