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Abstract

In this study a confidence measure for probability density
functions (pdfs) is presented. The measure can be used in
one-class classification to select a pdf threshold for class in-
clusion. In addition, confidence information can be used to
verify correctness of a decision in a multi-class case where
for example the Bayesian decision rule reveals which class
is the most probable. Additionally, using confidence values
– which represent in which quantile of the probability mass
a pdf value resides ([0, 1]) – is often straightforward com-
pared to using arbitrarily scaled pdf values. As the main
contributions, use of confidence information in classifica-
tion is described and a method for confidence estimation is
presented.

1 Introduction

One-class classification, also called as novelty detection,
outlier detection, or data description ([7]), can be used to
detect uncharacteristic observations. One-class classifica-
tion is necessary when samples can be obtained only from
a single known class, for example, normal operation mode
in motor condition monitoring where all failure modes are
not known. One-class classification is also useful when the
background class contains enormous variations making its
estimation unfeasible, for example, background class in ob-
ject detection: the background class should contain every-
thing except the object to be detected.

The most straightforward method for obtaining an one-
class classifier is to estimate the probability density of the
data and to set a density value threshold. Gaussian mixture
models (GMM) have been widely used in classification and
general density estimation tasks, and they are also suitable
for one-class classification. The expectation-maximization
(EM) is a general method for estimating mixture model pa-

rameters, and the EM algorithm is proved to converge to
the global maximum likelihood estimate if the overlap be-
tween Gaussians in the model is sufficiently small and there
is a sufficient amount of data [5]. The proposed confidence
measure is based on a density quantile defined for Gaussian
mixture model probability density function.

The main contribution of this study is a method for com-
puting confidence value which denotes in which quantile
of the probability mass a pdf value resides: the confidence
value is always between 0 and 1. The confidence is formu-
lated to measure reliability of a class assignment – the lower
the confidence, the more probable a classification mistake
is. Confidence can be used in one-class classification for se-
lecting a pdf threshold for class inclusion. In addition, con-
fidence information can be used to verify the correctness of
a classification decision in multi-class classification where,
for example, the Bayesian decision rule is used to select the
most probable class. Moreover, working with confidence
values is often easier than working directly with arbitrarily
scaled pdf values. The proposed confidence measure is de-
fined for GMMs, but can be extended to any pdf fulfilling
the required conditions. Two algorithms, one utilizing only
training data and the second also generated data, are pro-
posed. The latter approach overcomes the problem of lim-
ited training data producing coarsely quantized confidence
values.

2 Gaussian mixture pdf

Finite mixture models and their typical parameter esti-
mation methods can approximate a wide variety of pdfs and
are thus attractive solutions for cases where single function
forms, such as a single normal distribution, fail. Generally
the basic distribution function can be of any type, but the
multivariate normal distribution, the Gaussian distribution,
is undoubtedly one of the most well-known and useful dis-
tributions in statistics, playing a predominant role in many



areas of applications [8].
A non-singular multivariate normal distribution of a D

dimensional random variable X �→ x can be defined as

X ∼ N (x; µ, Σ) =
1

(2π)D/2|Σ|1/2
exp

»
−1
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(x − µ)T Σ−1(x− µ)

–

(1)

where µ is the mean vector and Σ the covariance matrix
of the normally distributed random variable X . The multi-
variate Gaussian pdfs belong to the class of elliptically con-
toured distributions where the equiprobability surfaces of
the Gaussian are µ-centered hyperellipsoids [8].

The Gaussian distribution in Eq. 1 can be used to de-
scribe a pdf of real valued random vector (x ∈ RD). How-
ever, a similar form can be derived for complex random vec-
tors (x ∈ CD) as (e.g. [2])

NC(x; µ, Σ) =
1

πD|Σ| exp
[−(x − µ)∗Σ−1(x − µ)

]
(2)

where ∗ denotes the adjoint matrix.
For a multimodal random variable, where values are gen-

erated by several randomly occurring independent sources
instead of a single source, a finite mixture model can be
used to approximate the true pdf. If the Gaussian form
is sufficient for single sources then a Gaussian mixture
model (GMM) can be used in the approximation. It should
be noted that the underlying distributions do not necessar-
ily need to be Gaussians but GMMs can also approximate
many other types of distributions.

The GMM probability density function can be defined as
a weighted sum of Gaussians

p(x; θ) =
C∑

c=1

αc N (x; µc, Σc) (3)

where αc is the weight of cth component. The weight can
be interpreted as a priori probability that a value of the
random variable is generated by the cth source, and thus,
0 ≤ αc ≤ 1 and

∑C
c=1 αc = 1. Now, a Gaussian mixture

model probability density function is completely defined by
a parameter list [1]

θ = {α1, µ1, Σ1, . . . , αC , µC , ΣC} . (4)

3 Classification using confidence

In our case confidence is used to estimate the reliabil-
ity of a classification result where a class label is assigned
to an unknown observation. If the confidence is low it is
more probable that a wrong decision has been made. In-
tuitively a value of class conditional pdf at an observation
corresponds to decision confidence for favor of the corre-
sponding class: the higher the pdf value is, the more class
instances appear similar to the observation. However, using

pdf values directly can be difficult since they are arbitrarily
scaled. Confidence values are always in the range [0, 1].

The most straightforward use of confidence is to find a
pdf value threshold for a class [6]. The threshold can be
used to decide whether an observation is sufficiently simi-
lar to the class in question. The threshold can be selected
based on the training data, for example, by selecting a pdf
threshold for which half of the training data yields higher
pdf values (median). Another possibility is to select the
threshold using confidence: finding a threshold which in-
cludes a certain proportion of the total probability mass. It
should be noted that the pdf type is not limited to a single
Gaussian distribution but mixture models with an arbitrary
number of components can be used. The selection method
can be easily generalized for other types of pdfs.

3.1 Interpretation of confidence

Definition 1 Confidence value κ ∈ [0, 1] and a confi-
dence region R ⊆ Ω for a probability density function
0 ≤ p(x) < ∞, ∀x ∈ Ω. κ is a confidence value related to
a non-unique confidence region R such that

∫
Ω\R

p(x)dx = κ . (5)

The confidence in Definition 1 is easily interpretable via
the confidence region R. It is a region which covers a pro-
portion 1 − κ of the probability mass of p(x) because for
probability distributions

∫
Ω p(x)dx = 1. It is clear that

κ = 1 for R = ∅ and κ = 0 for R = Ω. It should be
noted that the confidence value has no use until the region
R is defined as the minimal volume region which satisfies
Definition 1. The minimal volume region is called the high-
est density region (HDR) [4]. The HDR can be non-unique
(e.g., the uniform distribution).

A confidence value corresponds to a proportion of a
probability mass that retains in the area Rk for the class
ωk. In a classification task where certain confidence for
decision making is required the confidence value itself is
not used but the confidence region Rk is important since
a sample vector x is allowed to enter the class ωk only if
x ∈ Rk. If a sample is not within the confidence region
of any of the classes it must be classified to a background
class. The background class is a special class and samples
assigned to the class need special attention; for example, in
a two-class problem where data is available only from one
class the background class may represent another class with
an unknown distribution.

To find the confidence region a reverse approach can be
used to find a pdf value τ which is at the border of the con-
fidence region. It is assumed that the gradient of the pdf
is never zero in the neighborhood of any point where the
pdf value is nonzero. τ must be equal everywhere in the



border, otherwise the region cannot be the minimal volume
region [4]. τ can be computed by rank-order statistics using
the density quantile F (τ) (e.g., [4]) and by generating data
according to the pdf.

3.2 Estimation algorithms

An analytical solution to the GMM confidence region
cannot be solved and therefore estimation must be used. Es-
timation can be based on the GMM training data directly, or
it can be based on randomly generated data derived from the
estimated pdf.

A pdf value threshold for p(x) can be selected with the
help of training data. First, a cumulative pdf value his-
togram H for the data x1..N is created (Algorithm 1). Sec-
ond, the threshold can be found using the cumulative his-
togram H and the required confidence value c = 1 − F (τ)
using Algorithm 2.

Algorithm 1 Create cumulative confidence histogram H for pdf
p(x) with sample vectors x1..N (training data)

1: for k = 1..N do
2: Calculate pdf value for xk, Hk = p(xk)
3: end for
4: Sort H in ascending order, H=sort(H)
5: Return H .

Algorithm 2 Select pdf threshold value τ for the confidence value
c using the confidence histogram H1..N

1: Select histogram position, m=round(c ∗ N )
2: Return τ = Hm.

Confidence value for a new sample x can be calculated
using Algorithm 3.

Algorithm 3 Return confidence value c for a sample vector x us-
ing confidence histogram H1..N of the pdf p(x)

1: Calculate pdf value for the sample vector x, px = p(x)
2: Select position of the closest pdf value to px in H , m =

argmini|Hi − px|
3: Return c = m/N .

In Algorithms 2 and 3 interpolation can be used instead
of simply selecting the nearest value.

In the case of Gaussian mixture models, it may be ben-
eficial to use randomly generated data. An algorithm for
generating random data for any GMM is presented in Algo-
rithm 4. An algorithm for generating data based on a sin-
gle multi-variate Gaussian distribution has been presented
in [8], and the algorithm has been extended here to GMM
pdfs with multiple components.

Algorithm 4 Generate N random samples, X, for a D-
dimensional GMM of C components with weights α1..C , mean
vectors µ1..C and covariance matrices Σ1..C

1: k=1
2: for c = 1..C do

3: T = chol(Σc) {Cholesky decomposition }
{Number of generated samples depends on the weight of
the component, αc }

4: for 1..round(αcN) do
5: Z = randn(1 × D) {Generate D independent normally

distributed (µ = 0, σ = 1) random variables}
6: Xk = ZT + µc

7: k=k+1
8: end for
9: end for

4 Experiments

4.1 Data generation

The performance of the confidence and threshold com-
putation methods with Algorithms 1 to 4 depends only on
the amount of data – assuming that the data and the es-
timated GMM represent the same underlying distribution.
If that holds, the only inaccuracy in the confidence values
is caused by sparse sampling, i.e., limited amount of data.
If the distributions deviate slightly from each other, which
is typically caused by the GMM parameter estimation, the
confidence values may be biased. If there is a large discrep-
ancy between the distributions the confidence values may
become completely useless, for example, all become bina-
rized to either 0 or 1.

The number of required random samples increases with
respect to the data dimensionality. The effect is demon-
strated in Fig. 1. To avoid the issue of distribution mis-
match, the GMM pdf was generated semi-randomly and
data was derived from the generated GMMs. A pdf thresh-
old for a D-dimensional Gaussian with confidence c = 0.5
was searched. First, random data was generated with Alg. 4
and then a pdf threshold was searched with Algs. 1 and 2.
For each value of D the number of needed samples was
evaluated repeatedly; each evaluation consisted of creating
a semi-random covariance matrix and finding a number of
samples at which standard deviation of the found pdf thresh-
old value was varying at most 1% from the mean value.
The number of needed samples increased linearly with the
data dimensionality (Fig. 1). The linear dependency is as
expected based on the data generating Algorithm 4: a D-
dimensional sample is generated using D random numbers,
despite the fact that the size of the covariance matrix in-
creases quadratically.

4.2 Image feature detection

In the second example we demonstrate the use of confi-
dence information in image processing – detection of image
features [3]. In face detection methods based on detection
of smaller facial parts, image features, features are extracted
from every spatial location and for all locations one of the
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Figure 1. Required number of generated sam-
ples for a pdf threshold estimate (c = 0.5).

feature classes is assigned (e.g., [3]). The final detection
is based on the inspection of spatial configuration of the
image features. In Fig. 2(a) is shown a facial image and
10 marked image features [3]. In the training phase Gabor
features were extracted from training set images and class
conditional GMM pdfs were estimated for the each feature
class. In Fig. 2(b) is shown a pdf surface for the image fea-
ture number 7 corresponding to the left (in the image) nos-
tril. In Figs. 2(c) and 2(d) are shown only the confidence
regions corresponding to 0.5 and 0.95 confidence values.
It is clear that the correct image feature location, the left
nostril, was already included in the 0.95 confidence region,
and thus, image feature search space for the next processing
level was reduced dramatically [3]. Using the confidence
information image feature based detection and recognition
methods can be sped up significantly.

5 Conclusions

The main contribution of this study was a method for
computing confidence values for GMM pdfs by utilizing an
approximation approach. A low confidence corresponds to
the high probability of a wrong classification decision, and
conversely, a high confidence that the classification decision
was likely to be correct. The proposed measure is based on
the pdf density quantile. The results are useful in reducing
search space in the image feature based object detection and
recognition.
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Figure 2. Example of using density quantile
for defining confidence regions : (a) face im-
age and 10 marked image feature classes;
(b) pdf value surface for the left (in the im-
age) nostril class; (c) confidence threshold
0.5 (F (τ) = 0.5); (d) confidence threshold 0.95
(F (τ) = 0.05).
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