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Abstract
Visual object categorization is one of the most active
research topics in computer vision, and Caltech-101
data set is one of the standard benchmarks for evalu-
ating the method performance. Despite of its wide use,
the data set has certain weaknesses: i) the objects are
practically in a standard pose and scale in the middle
of the images and ii) background varies too little in cer-
tain categories making it more discriminative than the
foreground objects. In this work, we demonstrate how
these weaknesses bias the evaluation results in an unde-
sired manner. In addition, we reduce the bias effect by
replacing the backgrounds with random landscape im-
ages from Google and by applying random Euclidean
transformations to the foreground objects. We demon-
strate how the proposed randomization process makes
visual object categorization more challenging improv-
ing the relative results of methods which categorize ob-
jects by their visual appearance and are invariant to
pose changes. The new data set is made publicly avail-
able for other researchers.

1. Introduction

Visual object categorisation (VOC) has been one of

the most active computer vision research topic dur-

ing the recent years. The mainstream methods are

based on the well-known “bag-of-features” (BoF) ap-

proach [1, 15, 10]. To evaluate the performance of

the methods, researchers use public benchmarks which

contain training and test images, the ground truth, that

is, category labels and annotated object segments, and

an evaluation protocol. The most important benchmarks

are Caltech-101 [4], Caltech-256 [5] and LabelMe [13]

data sets, and the annual Pascal VOC challenge [3, 2].

Caltech-256 [5] and LabelMe [13] provide the most dif-

ficult challenge, but Caltech-101 is still important for

the basic research since they include 3D pose variations

and contain of multiple objects in a single image. The

images in Clatech-101 are of moderately good quality,

the categories are well selected and annotated, and most

importantly, its pose variation is controlled. Caltech-

101 has been claimed to be too easy, but we argue that

this partly results from the bias caused by data selection,

which is studied in this work.

The images in Caltech-101 have many good proper-

ties, but there exists also certain undesirable properties

due to the selection process of the images. This data se-

lection bias may result distorted evaluation results and

consequent misinterpretation of BoF methods’ applica-

bility. Specifically, i) the objects are mainly in a stan-

dard pose and scale in the middle of the images and

ii) background variability is insufficient in certain cate-

gories making it a more characteristic feature than the

object visual appearance. Our main contributions are

i) quantitative analysis of the bias caused by data se-

lection and ii) a new randomized version of Caltech-

101, where the main factors resulting to the bias are

reduced. In the randomized set, the backgrounds are

replaced with random landscape images from Google

and the strong prior of the object placement and pose

is reduced by random Euclidean transformations. The

randomization process is illustrated in Fig. 1 and the

complete data set is available at http://www.it.
lut.fi/project/visiq/.

Figure 1. Randomized Caltech-101.
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1.1 Related work
The most important VOC data sets are Caltech-101 [4],

its extension Caltech-256 [5], and the separate La-

belMe [13]. The Caltech sets stimulated arranging the

Pascal VOC challenges from 2005 to date [3, 2]. Prior

to our work, the weaknesses in the collected images

have been pointed out by Ponce et al. [12].

Fei-Fei et al. [4] have set the standards for VOC

research by using Caltech-101. However, the pub-

lished performance improvements saturated quite fast,

and Ponce et al. [12] identified significant weaknesses

in Caltech-101: the images are not challenging enough

since the objects are captured from similar view points

causing small variation in pose and scale, and often the

object backgrounds are undesirably similar. These is-

sues are visible in the original images in Fig. 1 where all

the faces are frontal, their pose and location is very sim-

ilar, and some similar background structures appear in

every image. Ponce et al. proposed a new data set col-

lected from Flickr images. The set was used in Pascal

VOC 2005 and is continuously updated for the annual

competition. In 2005, there were only four categories,

but in the 2009 competition, the number was increased

to 20 [2].

Our randomized Caltech-101 circumvents the prob-

lems related to the pose, location, and scale of the ob-

ject, and to the background. The remaining difference

to the other available sets is the fact that the randomized

data is still intrinsically 2-D whereas the others contain

images in all 3-D poses. Genuine 3-D data is extremely

difficult for computer vision methods, but it is ques-

tionable whether the problem is learnable just from the

data, or should the 3-D pose information be provided as

well. Lately, state-of-the-art results have been reported

in [14], but they used separate 3-D data in training. We

agree that genuine 3-D data is the ultimate challenge,

but we argue that 2-D data sets, such as Caltech-101, are

still important for method development, and therefore,

making them more challenging is important. On the

other hand, categorization can be performed, in prin-

ciple, using 2-D methods which are trained with objects

in different poses separately (car front, car rear, car side,

etc.)

2. Bag-of-Features
We use our own implementation of the general BoF ap-

proach illustrated in Fig. 2. In the first stage, we use the

standard SIFT procedure [9] to detect and describe in-

terest points. In the second stage, we cluster the descrip-

tors with the self-organising map (SOM) [7] instead of,

for example, K-Means [11, 17]. The SOM nodes form

the codebook. The codebook is used to describe the im-

age content by forming a codebook histogram, that is,

the occurrences of codes in an input image. The his-

togram is used for the classification using, for example,

the 1-NN rule. The SOM-generated codebooks provide

similar and often superior results to the K-means. More

details of our system and its performance can be found

in [6].

Figure 2. The applied Bag-of-features approach.

3. Randomized Caltech-101

Borders of the foreground objects have been annotated

for all the images in Caltech-101. Using the annota-

tion data, the foreground regions can be cropped, ge-

ometrically transformed, and drawn onto other back-

grounds. The standard Euclidean transformation op-

tions are translation, scale, and rotation. In our random-

ization process, we apply random rotations of ±20◦.

The range of angles was selected to limit the variations

below the direction sensitivity of the human visual sys-

tem [16]. Random translations were achieved by posi-

tioning the transformed regions randomly onto the ran-

dom background images from Google. The scale was

not explicitly changed, but the varying size of the ran-

dom backgrounds implicitly changed the proportional

object scale.

The minor pose and alignment variance of the orig-

inal images is visible in the middle column in Fig. 3,

where the selected categories are clearly recognizable

from their average images. On the other hand, the av-

erage images become blurry when the averages have

been computed after random rotations only. This can

be seen clearly for the natural objects in the rightmost

column of the figure, while the two simple human-made

objects, stop sign and ying-yang symbol, are still recog-

nisible due to the rotation limits. It is evident, that the

randomized rotations and translations, and the implicit

scale changes prevent the utilization of the strong prior

related to the object alignment and pose in the original

Caltech-101 images for VOC learning.
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Figure 3. Examples of original Caltech-101 im-

ages (left), average images of the original ones

(middle), and the average of randomized images

(right).

The importance of background randomization is not

evident from the average images in Fig. 3, but is quanti-

tatively verified by the experiments in the next section.

We gathered some natural scenery and landscape im-

ages from the Internet using Google and embedded the

foreground objects onto these randomly selected back-

grounds at random locations. It is noteworthy, that the

images cannot be considered as “natural” anymore be-

cause the objects do not appear in their typical scene.

However, methods based purely on the object appear-

ance and tolerating geometric variance should remain

unaffected while methods which exploit the insufficient

background variation in Caltech-101 may severely fail.

4. Experiments
To quantitatively support our observations, we con-

ducted several experiments which are described in the

following. According to the standard VOC evaluation

procedure, we utilised categorisation performance as

the quantitative evaluation measure. The performance

was computed as average classification accuracy over

classes as it is presented by Lazebnik et al. [8]. We

computed the performance values as a function of the

number of categories. The asymptotic VOC behaviour

is important since the methods should ultimately cope

with thousands or even hundreds of thousands of cate-

gories.

The experimental procedure is randomized itself: for

each number of categories, 10 independent iterations

were performed by first selecting random categories and

30 random training images for each category. 20 im-

ages, or what was left out from the training process,

were used in testing. The optimal codebook size was

experimentally selected by trying different sizes from

50 to 10 000, and choosing the codebook that performed

the best on average.

There were five data configurations for which the

BoF method described in Section 2 was tested and the

codebook size optimised: i) the original Caltech-101

data (Original), ii) only the Caltech-101 foreground

objects (Objects only), iii) only the Caltech-101 back-

grounds (Backgrounds only), iv) the original images

with random backgrounds (Random backgrounds), and

v) the full randomized images according to Section 3

(Random bg + rot + trans).

The results from all the experiments are shown in the

single graph in Fig. 4. The surprising result is that, on

average, the backgrounds provide more discriminative

features than the foreground objects themselves. This

reflects both the importance of background (scene) in-

formation for the recognition, but also the limited vari-

ability of background in the data set. Caltech-101 im-

ages reflect more the process of how the data was se-

lected than how the objects appear in the natural scenes

– the bias from data selection. The foreground infor-

mation performed only slightly better than the full im-

ages, which reflects the importance of scene analysis

for VOC. As an important result, the randomization of

the backgrounds yielded to a significant collapse in the

performance. The collapse was even more severe with

the random transformation. The result can be explained

by the SIFT features, which are invariant to scale and

rotation, but in practise not perfect due to their limited

amount of discrete “bins”.

5. Conclusions

In this work, we studied the effects of data selec-

tion to training of visual object categorisation meth-

ods. Specifically, we pointed out the findings similar to

Ponce et al. [12], that the widely-used Caltech-101 data

set has certain weaknesses for VOC research: insuffi-

cient variation in object pose and alignment and unre-

alistically strong dependence between the background

and objects. Ponce et al. solved these issues by collect-

ing a new data set, which also introduced a new source
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Figure 4. Performance when using different

types of data.

of variation: the full 3-D pose view point change. Our

contribution is an alternative solution where Caltech-

101 was made more challenging by randomization. We

demonstrated the advantages of randomization qualita-

tively by plotting the examples of average images and

quantitatively by running performance evaluations with

our BoF algorithm for various data configurations. For

Caltech-101, the bias caused by data selection is very

strong, which is evident from the fact that the best re-

sults were achieved using the image backgrounds only.

The bias was reduced by the randomization procedure

proposed in this work.

We believe that Caltech-101 is still useful for re-

search since it provides good-quality category data with

controlled 2-D variation. To facilitate future work, we

have published the new randomized data at our web site:

http://www.it.lut.fi/project/visiq/.
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